Perioperative probiotic treatment can reduce the rate of postoperative septicemia and is associated with reduced serum zonulin concentrations in patients undergoing colectomy. We propose a clinical regulatory model that might explain this association. This trial was registered at http://www.chictr.org/en/ as ChiCTR-TRC-00000423.
By fusing the extracellular domain of the natural killer (NK) cell receptor NKG2D to DAP12, we constructed a chimeric antigen receptor (CAR) to improve NK cell tumor responses. An RNA electroporation approach that provides transient expression of the CAR was adopted as a risk mitigation strategy. Expression of the NKG2D RNA CAR significantly augmented the cytolytic activity of NK cells against several solid tumor cell lines in vitro and provided a clear therapeutic benefit to mice with established solid tumors. Three patients with metastatic colorectal cancer were then treated with local infusion of the CAR-NK cells. Reduction of ascites generation and a marked decrease in number of tumor cells in ascites samples were observed in the first two patients treated with intraperitoneal infusion of low doses of the CAR-NK cells. The third patient with metastatic tumor sites in the liver was treated with ultrasound-guided percutaneous injection, followed by intraperitoneal infusion of the CAR-NK cells. Rapid tumor regression in the liver region was observed with Doppler ultrasound imaging and complete metabolic response in the treated liver lesions was confirmed by positron emission tomography (PET)-computed tomographic (CT) scanning. Our results highlight a promising therapeutic potential of using RNA CAR-modified NK cells to treat metastatic colorectal cancer.
BackgroundColorectal liver metastases (CLM) occur frequently and postoperative intestinal infection is a common complication. Our previous study showed that probiotics could decrease the rate of infectious complications after colectomy for colorectal cancer. To determine the effects of the perioperative administration of probiotics on serum zonulin levels which is a marker of intestinal permeability and the subsequent impact on postoperative infectious complications in patients with CLM.Methods150 patients with CLM were randomly divided into control group (n = 68) and probiotics group (n = 66). Probiotics and placebo were given orally for 6 days preoperatively and 10 days postoperatively to control group and probiotics group respectively. We used the local resection for metastatic tumor ,while for large tumor, the segmental hepatectomy. Postoperative outcome were recorded. Furthermore, complications in patients with normal intestinal barrier function and the relation with serum zonulin were analyzed to evaluate the impact on the liver barrier dysfunction.ResultsThe incidence of infectious complications in the probiotics group was lower than control group. Analysis of CLM patients with normal postoperative intestinal barrier function paralleled with the serum zonulin level. And probiotics could also reduce the concentration of serum zonulin (P = 0.004) and plasma endotoxin (P < 0.001).ConclusionPerioperative probiotics treatment could reduce the serum zonulin level, the rate of postoperative septicemia and maintain the liver barrier in patients undergoing CLM surgery. we propose a new model about the regulation of probiotics to liver barrier via clinical regulatory pathway. We recommend the preoperative oral intake of probiotics combined with postoperative continued probiotics treatment in patients who undergo CLM surgery.Trial registrationChiCTR-TRC-12002841. 2012/12/21Electronic supplementary materialThe online version of this article (doi:10.1186/s12876-015-0260-z) contains supplementary material, which is available to authorized users.
BackgroundColorectal cancer (CRC) is one of the most common malignances worldwide. Metastasis is responsible for the rapid recurrence and poor prognosis of CRC. However, the underlying molecular mechanism of CRC metastasis remains largely unclear. In this study we purposed to investigate the expression and biological functions of miR-490-3p in CRC metastasis, as well as to identify its downstream target genes and influenced pathway.MethodsThe expression level of miR-490-3p in CRC cell lines, CRC adjacent normal tissues, non-metastasis and metastasis tissues were assessed by quantitative real-time PCR. Patient survivals were follow-up up to 7 years. Gain-of-function and loss-of-function study on cell migration and invasion abilities were carried out by transfection of miR-490-3p mimics or inhibitors respectively. The molecular targets of miR-490-3p were computationally identified and experimentally verified by dual-luciferase reporter assay and western blot. Functional rescue was also conducted to confirm miR-490-3p inhibits CRC metastasis by targeting TGF-β signaling pathway.ResultsmiR-490-3p expression was persistently downregulated during CRC malignant progression, as well as in CRC cell lines. Artificially overexpression miR-490-3p in CRC cell lines inhibited cell migration and invasion abilities while knockdown miR-490-3p expression caused the reverse effects. TGFβR1 and MMP2/9 were the downstream targets of miR-490-3p in CRC. Inhibition of TGFβR1 could partially recover the tumor suppression effect of miR-490-3p.ConclusionmiR-490-3p is downregulated during CRC malignant progression. miR-490-3p represses CRC cell migration and invasion abilities, partially by targeting to the TGF-β signaling pathway. Taken together, miR-490-3p is acting as a tumor suppressor in CRC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.