B cell superantigens are proteins that are capable of immunoglobulin variable region mediated binding interactions with the naive B cell repertoire at frequencies that are orders of magnitude greater than occur for conventional antigens. Within this review we discuss recent observations regarding the molecular basis of these interactions and the distribution of superantigen binding capacities in different human B cell populations. These findings and current predictions regarding the relevance of these proteins to the physiologic development of immune repertoires are also discussed.
Cystic fibrosis (CF) is a monogenic autosomal recessive disorder caused by mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Clchannel. CF results in multiorgan dysfunction and ultimately mortality from respiratory sequelae. Although pharmacologic approaches have demonstrated efficacy in reducing symptoms and respiratory decline, a curative treatment modality remains elusive. Gene therapy, a promising curative strategy, has been limited due to poor correction efficiencies both in vitro and in vivo. Here, we use Cas9 and adeno-associated virus 6 (AAV6) to correct the F508 mutation (found in ~70% of CF alleles and ~90% of CF patients in North America) in upper airway basal stem cells (UABCs) obtained from CF and non-CF patients undergoing functional endoscopic sinus surgery (FESS). In UABCs from homozygous (F508/F508) and compound heterozygous (F508/Other) CF patients, we achieved 28 5 % and 42 15% correction, respectively. In homozygous human bronchial epithelial cells (HBECs), we achieved 41 4 % correction. Upon differentiation in air-liquid interface (ALI), cultures of corrected CF cells displayed partial restoration of CFTRinh-172 sensitive Clcurrents relative to non-CF controls: 31 5 % in UABCs and 51 3 % in HBECs (both from subjects homozygous for F508 CFTR). Finally, gene edited cells embedded successfully and retained expression of cytokeratin 5 (KRT5), a basal cell marker, on a FDA-approved porcine small intestinal submucosal (pSIS) membrane previously shown to improve re-mucosalization after FESS. In summary, we present an efficient, feederfree, selection-free and clinically compatible approach to generate cell-based therapies for CF from autologous airway stem cells. This approach represents a first step towards developing patient-specific autologous airway stem cell transplant as a curative treatment for CF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.