The tree bark periderm confers the first line of protection against pathogen invasion and abiotic stresses. The phellogen (cork cambium) externally produces cork (phellem) cells that are dead at maturity; while metabolically active, these tissues synthesize cell walls, as well as cell wall modifications, namely suberin and waxes. Suberin is a heteropolymer with aliphatic and aromatic domains, composed of acylglycerols, cross-linked polyphenolics and solvent-extractable waxes. Although suberin is essentially ubiquitous in vascular plants, the biochemical functions of many enzymes and the genetic regulation of its synthesis are poorly understood. We have studied suberin and wax composition in four developmental stages of hybrid poplar (Populus tremula x Populus alba) stem periderm. The amounts of extracellular ester-linked acyl lipids per unit area increased with tissue age, a trend not observed with waxes. We used RNA-Seq deep-sequencing technology to investigate the cork transcriptome at two developmental stages. The transcript analysis yielded 455 candidates for the biosynthesis and regulation of poplar suberin, including genes with proven functions in suberin metabolism, genes highlighted as candidates in other plant species and novel candidates. Among these, a gene encoding a putative lipase/acyltransferase of the GDSL-motif family emerged as a suberin polyester synthase candidate, and specific isoforms of peroxidase and laccase genes were preferentially expressed in cork, suggesting that their corresponding proteins may be involved in cross-linking aromatics to form lignin-like polyphenolics. Many transcriptional regulators with possible roles in meristem identity, cork differentiation and acyl-lipid metabolism were also identified. Our work provides the first large-scale transcriptomic dataset on the suberin-synthesizing tissue of poplar bark, contributing to our understanding of tree bark development at the molecular level. Based on these data, we have proposed a number of hypotheses that can be used in future research leading to novel biological insights into suberin biosynthesis and its physiological function.
The effects of heavy metal stress, drought stress, and their combination on xylem structure in red maple (Acer rubrum) seedlings were investigated in an outdoor pot experiment. As metal-contaminated substrate, a mixture of 1.5% slag with sand was used, with Ni, Cu, Co, and Cr as the main contaminants. Plants grown on contaminated substrate had increased leaf metal concentrations. The two stresses reduced plant growth in an additive manner. The effects of metal and drought stresses on xylem characteristics were similar to each other, with a reduced proportion of xylem tissue, reduced conduit density in stems, and reduced conduit size in the roots. This resulted, in both stems and roots, in reductions in hydraulic conductance, xylem-specific conductivity, and leaf-specific conductivity. The similarity of the responses to the two stresses suggests that the plants' response to metals was actually a drought response, probably due to the reduced water uptake capacity of the metal-exposed roots. The only plant responses specific to metal stress were decreasing trends of stomatal density and chlorophyll content. In conclusion, the exposure to metals aggravates water stress in an additive manner, making the plants more vulnerable to drought.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.