In the past decade, CHK2 has emerged as an important multifunctional player in the DNA-damage response signalling pathway. Parallel studies of the human CHEK2 gene have also highlighted its role as a candidate multiorgan tumour susceptibility gene rather than a highly penetrant predisposition gene for Li-Fraumeni syndrome. As discussed here, our current understanding of CHK2 function in tumour cells, in both a biological and genetic context, suggests that targeted modulation of the active kinase or exploitation of its loss in tumours could prove to be effective anti-cancer strategies.
).Mutations in BRCA1 and BRCA2 confer a high risk of breast and ovarian cancer 1 , but account for only a small fraction of breast cancer susceptibility 1,2 . To find additional genes conferring susceptibility to breast cancer, we analyzed CHEK2 (also known as CHK2), which encodes a cell-cycle checkpoint kinase that is implicated in DNA repair processes involving BRCA1 and p53 (refs 3-5). We show that CHEK2*1100delC, a truncating variant that abrogates the kinase activity 6 , has a frequency of 1.1% in healthy individuals. However, this variant is present in 5.1% of individuals with breast cancer from 718 families that do not carry mutations in BRCA1 or BRCA2 (P=0.00000003), including 13.5% of individuals from families with male breast cancer (P=0.00015). We estimate that the CHEK2*1100delC variant results in an approximately twofold increase of breast cancer risk in women and a tenfold increase of risk in men. By contrast, the variant confers no increased cancer risk in carriers of BRCA1 or BRCA2 mutations. This suggests that the biological mechanisms underlying the elevated risk of breast cancer in CHEK2 mutation carriers are already subverted in carriers of BRCA1 or BRCA2 mutations, which is consistent with participation of the encoded proteins in the same pathway.
Aims: To test the hypothesis that, in a matched series of prostatic cancers, either with or without BRCA1 or BRCA2 mutations, RAD51 protein expression is enhanced in association with BRCA mutation genotypes. Methods and results: RAD51 expression identified immunohistochemically was compared between prostatic cancers occurring in BRCA1 or BRCA2 mutation carriers and controls. RAD51 protein expression in the cytoplasm and nuclei of the benign tissues was significantly less than in the malignant tissues (P < 0.001). In all cancers, cytoplasmic expression of RAD51 was more prevalent and associated with higher Gleason score (P < 0.05) irrespective of BRCA mutational status, than its expression in benign tissues (P < 0.001). Although nuclear immunoreactivity was not observed in BRCA-associated cancers with Gleason score £7, it was significantly increased in all other groups of prostatic cancers when compared with benign tissues (P < 0.001). Conclusions: RAD51 protein is strongly expressed in high-grade prostatic cancers, whether sporadic or associated with BRCA germ-line mutations. Distinct localization of RAD51 between cytoplasm and nucleus, particularly in cancers of Gleason score £7, reflects distinct levels of RAD51 regulatory activity, from transcription to DNA repair. This biomarker may be of value in identifying patients requiring urgent treatment at diagnosis as well as in analysing biological mechanisms underlying aggressive phenotype of human prostatic cancer.
Despite aggressive salvage regimens, approximately half of all children who suffer a Wilms' tumour recurrence will die of their disease. Although there are increasing data on molecular genetic prognostic factors present in the tumour at diagnosis, there is little information regarding the molecular events that occur with Wilms' tumour progression and relapse. In the present study, microarray-based comparative genomic hybridization (aCGH) analysis has been carried out on 58 Wilms' tumour samples, which included 38 untreated primary and 20 recurrent tumours. A higher degree of copy number changes was observed in the recurrent tumours (33.0% genomic clones) than in the primary tumour (21.2%). Paired analysis highlighted the acquisition of 15q gain with high levels of IGF1R expression in the tumour recurrence in two cases. The most statistically significant abnormality acquired between diagnosis and relapse was loss of 17p. One case that experienced 17p loss was classified as favourable histology at diagnosis, but exhibited diffuse anaplasia at recurrence and had a homozygous TP53 deletion. Another instructive case with a constitutional 11p13 deletion presented with bilateral tumours and suffered two subsequent recurrences in the left kidney. A somatic WT1 mutation was found only in the right kidney tumour, while the constitutional 11p13 deletion was the only abnormality detected in the initial left kidney tumour by aCGH. The two subsequent relapses in the left kidney contained an accumulation of additional genetic alterations, including an independent WT1 mutation.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.