Microfluidic devices that generate stable concentration gradients are efficient instruments for automated calibration for analytical and bioanalytical systems. However, little attention has been paid to the development of reusable microfluidic concentration gradient generators, which can be useful for a range of species through mathematical characterization. In this work, we develop a microfluidic device based on three steps of serial dilution that were able to generate nonlinear concentration gradient for dyes and biomolecules. The microfluidic device was described mathematically, statistically and was suitable for reusable analytical and bioanalytical analysis. The device reproducibility was assessed by experimental tests, which have shown the same gradient concentration profile for different dyes and statistical reproducibility with 95% confidence interval for bovine serum albumin (BSA). Moreover, the experimental data converged well with those obtained by computational fluid dynamics simulation. Applicability was verified by coupling the microfluidic device to a surface plasmon resonance (SPR) biosensor, based on nanohole arrays with sensitivity of 358.7 nm RIU −1 determined by white-light SPR excitation exposed to different D-(+)-glucose aqueous solutions with 1.3361-1.4035 refractive index interval. The transmission light intensities obtained by the array of images allowed to quantify a pseudo-unknown BSA sample (160 µg mL −1 ) at 138 µg mL −1 . The SPR analysis has been validated in parallel by fluorescence emissions, which showed a concentration of 154.8 ± 16.6 µg mL −1 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.