High-gain optical parametric amplification is an important nonlinear process used both as a source of coherent infrared light and as a source of nonclassical light. In this work, we experimentally demonstrate an approach to optical parametric amplification that enables extremely large parametric gains with low energy requirements. In conventional nonlinear media driven by femtosecond pulses, multiple dispersion orders limit the effective interaction length available for parametric amplification. Here, we use the dispersion engineering available in periodically poled thin-film lithium niobate nanowaveguides to eliminate several dispersion orders at once. The result is a quasi-static process; the large peak intensity associated with a short pump pulse can provide gain to signal photons without undergoing pulse distortion or temporal walk-off. We characterize the parametric gain available in these waveguides using optical parametric generation, where vacuum fluctuations are amplified to macroscopic intensities. In the unsaturated regime, we observe parametric gains as large as 71 dB (118 dB/cm) spanning 1700–2700 nm with pump energies of only 4 pJ. When driven with pulse energies > 10 p J , we observe saturated parametric gains as large as 88 dB ( > 146 d B / c m ). The devices shown here achieve saturated optical parametric generation with orders of magnitude less pulse energy than previous techniques.
We present the first characterization of the noise properties and modulation response of the carrier-envelope offset (CEO) frequency in a semiconductor modelocked laser. The CEO beat of an optically-pumped vertical external-cavity surface-emitting laser (VECSEL) at 1030 nm was characterized without standard f -to-2f interferometry. Instead, we used an appropriate combination of signals obtained from the modelocked oscillator and an auxiliary continuous-wave laser to extract information about the CEO signal. The estimated linewidth of the free-running CEO beat is approximately 1.5 MHz at 1-s observation time, and the feedback bandwidth to enable a tight CEO phase lock to be achieved in a future stabilization loop is in the order of 300 kHz. We also characterized the amplitude and phase of the pump current to CEO-frequency transfer function, which showed a 3-dB bandwidth of ∼300 kHz for the CEO frequency modulation. This fulfills the estimated required bandwidth and indicates that the first self-referenced phase-stabilization of a modelocked semiconductor laser should be feasible in the near future. Optical frequency combs from modelocked solid-state lasers have been a revolution in the field of high precision metrology by directly and coherently linking the optical and microwave parts of the electromagnetic spectrum [1][2][3]. Such stabilized frequency combs enable the measurement of optical frequencies with an extreme precision [4,5] and constitute a key element of novel optical atomic clocks that have surpassed the best microwave frequency standards in terms of fractional frequency stability [6,7]. Most comb applications today require self-referencing, i.e., the detection and stabilization of the carrier envelope offset (CEO) frequency f CEO [1,8]. This has been achieved in various fiber laser systems [9] and solid-state lasers (Ti:sapphire [2] or diode-pumped solid-state lasers-DPSSLs [10,11]). Electronic feedback modulating the pump power of the femtosecond laser is the most common approach to phase-stabilize f CEO to an external reference frequency [3]. Alternative methods have been demonstrated, which make use of an intracavity loss modulator enabling the modulation bandwidth to be extended beyond the gain lifetime limitation, such as a graphene electro-optic modulator [12] or an opto-optical modulation of a semiconductor saturable absorber mirror (SESAM) [13]. Other solutions are based on feedforward corrections applied to the CEO frequency [14] or passive CEO cancellation using a difference frequency generation (DFG) process [15].Self-referencing modelocked lasers with a high repetition rate in the GHz range is much more challenging, as the CEO noise typically scales with the repetition rate [16], therefore requiring larger feedback bandwidths. In addition, the standard self-referencing method most often involves f -to-2f interferometry to detect the CEO frequency [1]. This requires a coherent supercontinuum (SC) spectrum that covers at least one frequency octave, which is fairly challenging to achieve fo...
Optical frequency combs based on ultrafast lasers have enabled numerous scientific breakthroughs. However, their use for commercial applications is limited by the complexity and cost of femtosecond laser technology. Ultrafast semiconductor lasers might change this issue as they can be mass produced in a cost-efficient way while providing large spectral coverage from a single technology. However, it has not been proven to date if ultrafast semiconductor lasers are suitable for stabilization of their carrier-envelope offset (CEO) frequency. Here we present what we believe to be the first CEO frequency stabilization of an ultrafast semiconductor disk laser (SDL). The optically pumped SDL is passively modelocked by a semiconductor saturable absorber mirror. It operates at a repetition rate of 1.8 GHz and a center wavelength of 1034 nm. The 273 fs pulses of the oscillator are amplified to an average power level of 6 W and temporally compressed down to 120 fs. A coherent octave-spanning supercontinuum spectrum is generated in a photonic crystal fiber. The CEO frequency is detected in a standard f -to-2f interferometer and phase locked to an external reference by feedback applied to the current of the SDL pump diode. This proof-of-principle demonstrates that ultrafast SDLs are suitable for CEO stabilization and constitutes a key step for further developments of this comb technology expected in the coming years.
We demonstrate the carrier-envelope offset (CEO) frequency stabilization of a Kerr lens mode-locked Yb:Lu 2 O 3 thin-disk laser oscillator operating in the strongly self-phase modulation (SPM) broadened regime. This novel approach allows overcoming the intrinsic gain bandwidth limit and is suited to support frequency combs from sub-100-fs pulse trains with very high output power. In this work, strong intra-oscillator SPM in the Kerr medium enables the optical spectrum of the oscillating pulse to exceed the bandwidth of the gain material Yb:Lu 2 O 3 by a factor of two. This results in the direct generation of 50-fs pulses without the need for external pulse compression. The oscillator delivers an average power of 4.4 W at a repetition rate of 61 MHz. We investigated the cavity dynamics in this regime by characterizing the transfer function of the laser output power for pump power modulation, both in continuous-wave and mode-locked operations. The cavity dynamics in mode-locked operation limit the CEO modulation bandwidth to ~10 kHz. This value is sufficient to achieve a tight phase-lock of the CEO beat via active feedback to the pump current and yields a residual in-loop integrated CEO phase noise of 197 mrad integrated from 1 Hz to 1 MHz.
We present the amplification of a mode-locked vertical external-cavity surface-emitting laser (VECSEL) using an Yb:YAG crystalline waveguide as gain medium. The VECSEL seed laser operates at a center wavelength of 1030 nm and generates 300-fs pulses at a repetition rate of 1.77 GHz. An average seed power of 60 mW was launched onto a 8.3 mm long fs-laser written Yb:YAG waveguide pumped by 7.7 W from a 969-nm continuous-wave VECSEL. The amplifier achieves an average output power of up to 2.9 W, corresponding to an amplification factor of 17 dB. Due to gain narrowing, the pulse duration increases to 629 fs. Our results show that crystalline waveguides are a promising technique for the realization of compact multi-watt ultrafast amplifier systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.