Prolactin (PRL) is known to suppress LH secretion. Kisspeptin neurons regulate LH secretion and express PRL receptors. We investigated whether PRL acts on kisspeptin neurons to suppress LH secretion in lactating (Lac) and virgin rats. Lac rats displayed high PRL secretion and reduced plasma LH and kisspeptin immunoreactivity in the arcuate nucleus (ARC). Bromocriptine-induced PRL blockade significantly increased ARC kisspeptin and plasma LH levels in Lac rats but did not restore them to the levels of non-Lac rats. Bromocriptine effects were prevented by the coadministration of ovine PRL (oPRL). Virgin ovariectomized (OVX) rats treated with either systemic or intracerebroventricular oPRL displayed reduction of kisspeptin expression in the ARC and plasma LH levels, and these effects were comparable with those of estradiol treatment in OVX rats. Conversely, estradiol-treated OVX rats displayed increased kisspeptin immunoreactivity in the anteroventral periventricular nucleus, whereas oPRL had no effect in this brain area. The expression of phosphorylated signal transducer and activator of transcription 5 was used to determine whether kisspeptin neurons in the ARC were responsive to PRL. Accordingly, intracerebroventricular oPRL induced expression of phosphorylated signal transducer and activator of transcription 5 in the great majority of ARC kisspeptin neurons in virgin and Lac rats. We provide here evidence that PRL acts on ARC neurons to inhibit kisspeptin expression in female rats. During lactation, PRL contributes to the inhibition of ARC kisspeptin. In OVX rats, high PRL levels suppress kisspeptin expression and reduce LH release. These findings suggest a pathway through which hyperprolactinemia may inhibit LH secretion and thereby cause infertility.
Oestradiol (E2) acts in the hypothalamus to regulate luteinising hormone (LH) and prolactin (PRL) secretion. Tamoxifen (TX) has been extensively used as a selective oestrogen receptor modulator, although its neuroendocrine effects remain poorly understood. In the present study, we investigated the hypothalamic effects of TX in rats under low or high circulating E2 levels. Ovariectomised (OVX) rats treated with oil, E2 or TX, or E2 plus TX, were evaluated for hormonal secretion and immunohistochemical analyses in hypothalamic areas. Both E2 and TX reduced LH levels, whereas TX blocked the E2 -induced surges of LH and PRL. TX prevented the E2 -induced expression of progesterone receptor (PR) in the anteroventral periventricular nucleus (AVPV) and arcuate nucleus (ARC), although it did not alter PR expression in OVX rats. TX blocked the E2 induction of c-Fos in AVPV neurones, consistent with the suppression of LH surge. However, TX failed to prevent E2 inhibition of kisspeptin expression in the ARC. In association with the blockade of PRL surge, TX increased the phosphorylation of tyrosine hydroxylase (TH) in the median eminence of OVX, E2 -treated rats. TX also precluded the E2 -induced increase in TH expression in the ARC. In all immunohistochemical analyses, TX treatment in OVX rats caused no measurable effect on the hypothalamus. Thus, TX is able to prevent the positive- but not negative-feedback effect of E2 on the hypothalamus. TX also blocks the effects of E2 on tuberoinfundibular dopaminergic neurones and PRL secretion. These findings further characterise the anti-oestrogenic actions of TX in the hypothalamus and provide new information on the oestrogenic regulation of LH and PRL.
Kisspeptin (Kp) regulates prolactin (PRL) in an estradiol-dependent manner. We investigated the interaction between ovarian steroid receptors and Kp in the control of PRL secretion. Intracerebroventricular injections of Kp-10 or Kp-234 were performed in ovariectomized (OVX) rats under different hormonal treatments. Kp-10 increased PRL release and decreased 3,4-dihydroxyphenylacetic acid levels in the median eminence (ME) of OVX rats treated with estradiol (OVX+E), which was prevented by tamoxifen. Whereas these effects of Kp-10 were absent in OVX rats, they were replicated in OVX rats treated with selective agonist of estrogen receptor (ER)α, propylpyrazole triol, but not of ERβ, diarylpropionitrile. Furthermore, the Kp-10-induced increase in PRL was two times higher in OVX+E rats also treated with progesterone (OVX+EP), which was associated with a reduced expression of both tyrosine hydroxylase (TH) and Ser40-phosphorylated TH in the ME. Kp-10 also reduced dopamine levels in the ME of OVX+EP rats, an effect blocked by the progesterone receptor (PR) antagonist RU486. We also determined the effect of Kp antagonism with Kp-234 on the estradiol-induced surges of PRL and luteinizing hormone (LH), using tail-tip blood sampling combined with ultrasensitive enzyme-linked immunosorbent assay. Kp-234 impaired the early phase of the PRL surge and prevented the LH surge in OVX+E rats. Thus, we provide evidence that Kp stimulation of PRL release requires ERα and is potentiated by progesterone via PR activation. Moreover, alongside its essential role in the LH surge, Kp seems to play a role in the peak phase of the estradiol-induced PRL surge.
Kisspeptin has been shown to stimulate prolactin secretion. We investigated whether kisspeptin acts through the Kiss1 receptor (Kiss1r) to regulate dopamine and prolactin. Initially, we evaluated prolactin response in a Kiss1r-deficient mouse line, in which Kiss1r had been knocked into GnRH neurons (Kiss1r−/−R). Intracerebroventricular kisspeptin-10 (Kp-10) increased prolactin release in wild-type but not in Kiss1r−/−R female mice. In ovariectomized, estradiol-treated rats, the Kiss1r antagonist kisspeptin-234 abolished the Kp-10–induced increase in prolactin release but failed to prevent the concomitant reduction in the activity of tuberoinfundibular dopaminergic (TIDA) neurons, as determined by the 3,4-dihydroxyphenylacetic acid/dopamine ratio in the median eminence. Using whole-cell patch clamp recordings in juvenile male rats, we found no direct effect of Kp-10 on the electrical activity of TIDA neurons. In addition, dual-label in situ hybridization in the hypothalamus of female rats showed that Kiss1r is expressed in the periventricular nucleus of the hypothalamus (Pe) and arcuate nucleus of the hypothalamus (ARC) but not in tyrosine hydroxylase (Th)–expressing neurons. Kisspeptin also has affinity for the neuropeptide FF receptor 1 (Npffr1), which was expressed in the majority of Pe dopaminergic neurons but only in a low proportion of TIDA neurons in the ARC. Our findings demonstrate that Kiss1r is necessary to the effect of kisspeptin on prolactin secretion, although TIDA neurons lack Kiss1r and are electrically unresponsive to kisspeptin. Thus, kisspeptin is likely to stimulate prolactin secretion via Kiss1r in nondopaminergic neurons, whereas the colocalization of Npffr1 and Th suggests that Pe dopaminergic neurons may play a role in the kisspeptin-induced inhibition of dopamine release.
The present study investigated whether intrinsic exercise capacity affects the changes in thermoregulation, metabolism and central dopamine (DA) induced by treadmill running. Male Wistar rats were subjected to three incremental exercises and ranked as low-performance (LP), standard-performance (SP) and high-performance (HP) rats. In the first experiment, abdominal (T) and tail (T) temperatures were registered in these rats during submaximal exercise (SE) at 60% of maximal speed. Immediately after SE, rats were euthanized and concentrations of DA and 3,4-dihydroxyphenylacetic acid (DOPAC) were determined in the preoptic area (POA). In the second experiment, oxygen consumption (VO) was measured and mechanical efficiency (ME) was calculated in these rats during an incremental exercise. HP rats ran for longer periods and fatigued with higher T values, with no difference in T. Nevertheless, thermoregulatory efficiency was higher in HP rats, compared to other groups. DA and DOPAC concentrations in the POA were increased by SE, with higher levels in HP compared to LP and SP rats. VO also differed between groups, with HP rats displaying a lower consumption throughout the incremental exercise but a higher VO at fatigue. ME, in turn, was consistently higher in HP than in LP and SP rats. Thus, our results show that HP rats have greater T values at fatigue, which seem to be related to a higher dopaminergic activity in the POA. Moreover, HP rats exhibited a greater thermoregulatory efficiency during exercise, which that can be attributed to a lower VO, but not to changes in tail heat loss mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.