Globally suicidal behavior is the third most common cause of death among patients with major depressive disorder (MDD). This study presents multi-lag tone-entropy (T-E) analysis of heart rate variability (HRV) as a screening tool for identifying MDD patients with suicidal ideation. Sixty-one ECG recordings (10 min) were acquired and analyzed from control subjects (29 CONT), 16 MDD subjects with (MDDSI+) and 16 without suicidal ideation (MDDSI-). After ECG preprocessing, tone and entropy values were calculated for multiple lags (m: 1-10). The MDDSI+ group was found to have a higher mean tone value compared to that of the MDDSI- group for lags 1-8, whereas the mean entropy value was lower in MDDSI+ than that in CONT group at all lags (1-10). Leave-one-out cross-validation tests, using a classification and regression tree (CART), obtained 94.83 % accuracy in predicting MDDSI+ subjects by using a combination of tone and entropy values at all lags and including demographic factors (age, BMI and waist circumference) compared to results with time and frequency domain HRV analysis. The results of this pilot study demonstrate the usefulness of multi-lag T-E analysis in identifying MDD patients with suicidal ideation and highlight the change in autonomic nervous system modulation of the heart rate associated with depression and suicidal ideation.
The unmet timely diagnosis requirements, that take place years after substantial neural loss and neuroperturbations in neuropsychiatric disorders, affirm the dire need for biomarkers with proven efficacy. In Parkinson’s disease (PD), Mild Cognitive impairment (MCI), Alzheimers disease (AD) and psychiatric disorders, it is difficult to detect early symptoms given their mild nature. We hypothesize that employing fine motor patterns, derived from natural interactions with keyboards, also knwon as keystroke dynamics, could translate classic finger dexterity tests from clinics to populations in-the-wild for timely diagnosis, yet, further evidence is required to prove this efficiency. We have searched PubMED, Medline, IEEEXplore, EBSCO and Web of Science for eligible diagnostic accuracy studies employing keystroke dynamics as an index test for the detection of neuropsychiatric disorders as the main target condition. We evaluated the diagnostic performance of keystroke dynamics across 41 studies published between 2014 and March 2022, comprising 3791 PD patients, 254 MCI patients, and 374 psychiatric disease patients. Of these, 25 studies were included in univariate random-effect meta-analysis models for diagnostic performance assessment. Pooled sensitivity and specificity are 0.86 (95% Confidence Interval (CI) 0.82–0.90, I2 = 79.49%) and 0.83 (CI 0.79–0.87, I2 = 83.45%) for PD, 0.83 (95% CI 0.65–1.00, I2 = 79.10%) and 0.87 (95% CI 0.80–0.93, I2 = 0%) for psychomotor impairment, and 0.85 (95% CI 0.74–0.96, I2 = 50.39%) and 0.82 (95% CI 0.70–0.94, I2 = 87.73%) for MCI and early AD, respectively. Our subgroup analyses conveyed the diagnosis efficiency of keystroke dynamics for naturalistic self-reported data, and the promising performance of multimodal analysis of naturalistic behavioral data and deep learning methods in detecting disease-induced phenotypes. The meta-regression models showed the increase in diagnostic accuracy and fine motor impairment severity index with age and disease duration for PD and MCI. The risk of bias, based on the QUADAS-2 tool, is deemed low to moderate and overall, we rated the quality of evidence to be moderate. We conveyed the feasibility of keystroke dynamics as digital biomarkers for fine motor decline in naturalistic environments. Future work to evaluate their performance for longitudinal disease monitoring and therapeutic implications is yet to be performed. We eventually propose a partnership strategy based on a “co-creation” approach that stems from mechanistic explanations of patients’ characteristics derived from data obtained in-clinics and under ecologically valid settings. The protocol of this systematic review and meta-analysis is registered in PROSPERO; identifier CRD42021278707. The presented work is supported by the KU-KAIST joint research center.
In the United Arab Emirates, neuropsychiatric disorders are estimated to contribute to one-fifth of the global burden of disease. Studies show that the UAE citizens' apathy towards seeking professional mental health services is associated with the 'religious viewpoints' on the issue, societal stigma, lack of awareness of mental health and lack of confidence in mental health-care providers. Mental health expenditures by the UAE government health ministry are not available exclusively. The majority of primary health-care doctors and nurses have not received official in-service training on mental health within the last 5 years. Efforts are to be made at deconstructing the position of mental illness and its treatments in the light of Islamic Jurisprudence; drafting culturally sensitive and relevant models of mental health care for Emirati citizens; liaising between Imams of mosques and professional mental health service providers; launching small-scale pilot programs in collaboration with specialist institutions; facilitating mentoring in line with Science, Technology, Engineering and Math (STEM) outreach programmes for senior school Emirati students concerning mental health; and promoting mental health awareness in the wider community through participation in events open to public.
Physiological and psychological underpinnings of suicidal behavior remain ill-defined and lessen timely diagnostic identification of this subgroup of patients. Arterial stiffness is associated with autonomic dysregulation and may be linked to major depressive disorder (MDD). The aim of this study was to investigate the association between arterial stiffness by photo-plethysmogram (PPG) in MDD with and without suicidal ideation (SI) by applying multiscale tone entropy (T-E) variability analysis. Sixty-one 10-min PPG recordings were analyzed from 29 control, 16 MDD patients with (MDDSI+) and 16 patients without SI (MDDSI−). MDD was based on a psychiatric evaluation and the Mini-International Neuropsychiatric Interview (MINI). Severity of depression was assessed using the Hamilton Depression Rating Scale (HAM-D). PPG features included peak (systole), trough (diastole), pulse wave amplitude (PWA), pulse transit time (PTT) and pulse wave velocity (PWV). Tone (Diastole) at all lags and Tone (PWA) at lags 8, 9, and 10 were found to be significantly different between the MDDSI+ and MDDSI− group. However, Tone (PWA) at all lags and Tone (PTT) at scales 3–10 were also significantly different between the MDDSI+ and CONT group. In contrast, Entropy (Systole), Entropy (Diastole) and Tone (Diastole) were significantly different between MDDSI− and CONT groups. The suicidal score was also positively correlated (r = 0.39 ~ 0.47; p < 0.05) with systolic and diastolic entropy values at lags 2–10. Multivariate logistic regression analysis and leave-one-out cross-validation were performed to study the effectiveness of multi-lag T–E features in predicting SI risk. The accuracy of predicting SI was 93.33% in classifying MDDSI+ and MDDSI− with diastolic T-E and lag between 2 and 10. After including anthropometric variables (Age, body mass index, and Waist Circumference), that accuracy increased to 96.67% for MDDSI+/− classification. Our findings suggest that tone-entropy based PPG variability can be used as an additional accurate diagnostic tool for patients with depression to identify SI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.