Perovskite solar cells (PSCs) have the potential to produce solar energy at a low cost, with flexibility, and high power conversion efficiency (PCE). However, there are still challenges to be addressed before mass production of PSCs, such as prevention from degradation under external stresses and the uniform, large-area formation of all layers. Among them, the most challenging aspect of mass production of PSCs is creating a high-quality perovskite layer using environmentally sustainable processes that are compatible with industry standards. In this review, we briefly introduce the recent progresses upon eco-friendly perovskite solutions/antisolvents and film formation processes. The eco-friendly production methods are categorized into two: (1) employing environmentally friendly solvents for perovskite precursor ink/solution, and (2) replacing harmful, volatile antisolvents or even limiting their use during the perovskite film formation process. General considerations and criteria for each category are provided, and detailed examples are presented, specifically focused on the works have done since 2021. In addition, the importance of controlling the crystallization behavior of the perovskite layer is highlighted to develop antisolvent-free perovskite formation methods. Graphical Abstract
The power conversion efficiency (PCE) of perovskite solar cells (PSCs) has been renewed annually, now recorded to 25.7%, which is the highest efficiency for thin‐film solar cells, raising expectations for commercialization. However, the PSCs have a massive technical lack in entering the photovoltaic industry because of the low PCE of perovskite solar modules (PSMs), poor stability, high levelized cost of energy (LCOE), and environmental issues. Here, cutting‐edge studies for overcoming the challenges faced by commercialization of PSCs are discussed. First, the reduction of the efficiency gap between small‐area PSCs and the large‐area PSMs via the solution process is reviewed. Second, the strategies for stable PSMs are discussed to reduce the LCOE. In addition, the environmental issues for manufacturing and sustainable use of PSMs are dealt with and it is demonstrated that the recycling/reuse of PSMs is the most promising way to reduce the manufacturing costs. Finally, it is suggested that the life cycle assessment system from manufacturing to recycling/reuse for PSMs is the key technology to resolve the commercialization issues of PSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.