The activities of 2-propanol in poly(ethylene glycol) (PEG) (M n: 1000, 300, 200) + 2-propanol solutions have been measured by the isopiestic method at 25 °C. Sodium iodide was used as the isopiestic standard for the calculation of activities. The original equation of Flory−Huggins and the modified Flory−Huggins equation with concentration dependent interaction parameters have been used for the correlation of obtained experimental solvent activity data. Better agreement with the experimental data was obtained using the modified Flory−Huggins equation.
A generalized form of a semiquantitative method has been developed based on the multilinear least-squares regression technique applied on the entire FTIR absorbance spectrum of a gaseous mixture to determine components concentration. Thermal degradation of poly(vinyl alcohol) samples with high, PVA(98), and low degree of hydrolysis, PVA(80), has been investigated by TG-FTIR simultaneous analysis performed in an inert atmosphere. Analysis of gaseous products was carried out using a routine developed in Matlab and this routine returns the product concentration with a reasonable RMS error. The correlation coefficients of the original mixture spectrum with the mixed output were obtained at some specific peak temperatures using irAnalysis software. The first process is the loss of physically adsorbed water which followed by two main processes of thermal degradation. In spite of the similarity of evolved gaseous products, two samples showed some differences in components concentrations identified in the volatile mixture. Acetaldehyde has been identified as the main volatile product in the first thermal degradation step of PVA(98) and PVA(80). The second major degradation product of PVA(80) is acetic acid due to presence of more residual acetate group while 2-butenal have been identified for PVA(98). Water was mainly produced in the first stage of thermal degradation of PVA(98) while it was identified in the first and second stages for PVA(80). This might be attributed to existence of a competition between water and residual acetate group for elimination that postpones the complete elimination of OH group to the second degradation stage.
A peak deconvolution procedure used for the analysis of data corresponding to simultaneous overlapping processes begins with separation of individual processes using functions such as Gaussian, Lorentzian, Weibull, and Fraser-Suzuki (FS) followed by application of kinetic analysis methods to the separated peaks. We propose a coupled peak deconvolution procedure to link the parameters of the FS functions of similar peaks in two DTG curves obtained at different linear heating rates, so that the coordinates of each peak can be obtained in a constrained manner. The proposed technique is a kinetic deconvolution method rather than a pure mathematical deconvolution technique. To analyze individual peaks in our study, the non-parametric kinetic and Freidman's isoconversional methods have been applied to determine kinetic triplet of each process. This technique has been tested with both simulated and experimental data. Using this technique, the effects of molecular weight and degree of hydrolysis of polyvinyl alcohol (PVA) samples on reaction mechanism and activation energy of thermal degradation were studied. The presence of acetate group in the PVA samples causes thermal stability, decreases the rate of main reactions, and increases the activation energy. The results of this study may help tailor heat-resistant materials with proper choice of polymer characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.