Accumulating evidence highlights links between iron regulation and respiratory disease. Here, we assessed the relationship between iron levels and regulatory responses in clinical and experimental asthma.We show that cell-free iron levels are reduced in the bronchoalveolar lavage (BAL) supernatant of severe or mild–moderate asthma patients and correlate with lower forced expiratory volume in 1 s (FEV1). Conversely, iron-loaded cell numbers were increased in BAL in these patients and with lower FEV1/forced vital capacity (FVC) ratio. The airway tissue expression of the iron sequestration molecules divalent metal transporter 1 (DMT1) and transferrin receptor 1 (TFR1) are increased in asthma, with TFR1 expression correlating with reduced lung function and increased Type-2 (T2) inflammatory responses in the airways. Furthermore, pulmonary iron levels are increased in a house dust mite (HDM)-induced model of experimental asthma in association with augmented Tfr1 expression in airway tissue, similar to human disease. We show that macrophages are the predominant source of increased Tfr1 and Tfr1+ macrophages have increased Il13 expression. We also show that increased iron levels induce increased pro-inflammatory cytokine and/or extracellular matrix (ECM) responses in human airway smooth muscle (ASM) cells and fibroblasts ex vivo and induce key features of asthma in vivo, including airway hyper-responsiveness (AHR) and fibrosis, and T2 inflammatory responses.Together these complementary clinical and experimental data highlight the importance of altered pulmonary iron levels and regulation in asthma, and the need for a greater focus on the role and potential therapeutic targeting of iron in the pathogenesis and severity of disease.
Sputum microbiome profiles identify severe asthma phenotypes of relative stability at 12-18 months Unsupervised microbiome-driven clustering Sputum microbial signature assessment Neutrophils Commensal bacteria Pathogenic bacteria Airway obstruction Macrophages Cluster 1 Severe adult asthma patients Baseline 12-18 month follow-up 2 robust microbiome clusters with relative stability after 12-18 months Cluster 2 More severe asthma Less severe asthma
The recent outbreak of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), has led to a worldwide pandemic. One week after initial symptoms develop, a subset of patients progresses to severe disease, with high mortality and limited treatment options. To design novel interventions aimed at preventing spread of the virus and reducing progression to severe disease, detailed knowledge of the cell types and regulating factors driving cellular entry is urgently needed. Here we assess the expression patterns in genes required for COVID-19 entry into cells and replication, and their regulation by genetic, epigenetic and environmental factors, throughout the respiratory tract using samples collected from the upper (nasal) and lower airways (bronchi). Matched samples from the upper and lower airways show a clear increased expression of these genes in the nose compared to the bronchi and parenchyma. Cellular deconvolution indicates a clear association of these genes with the proportion of secretory epithelial cells. Smoking status was found to increase the majority of COVID-19 related genes including ACE2 and TMPRSS2 but only in the lower airways, which was associated with a significant increase in the predicted proportion of goblet cells in bronchial samples of current smokers. Both acute and second hand smoke were found to increase ACE2 expression in the bronchus. Inhaled corticosteroids decrease ACE2 expression in the lower airways. No significant effect of genetics on ACE2 expression was observed, but a strong association of DNA- methylation with ACE2 and TMPRSS2- mRNA expression was identified in the bronchus.
Background Macrophages control innate and acquired immunity, but their role in severe asthma remains ill‐defined. We investigated gene signatures of macrophage subtypes in the sputum of 104 asthmatics and 16 healthy volunteers from the U‐BIOPRED cohort. Methods Forty‐nine gene signatures (modules) for differentially stimulated macrophages, one to assess lung tissue‐resident cells (TR‐Mφ) and two for their polarization (classically and alternatively activated macrophages: M1 and M2, respectively) were studied using gene set variation analysis. We calculated enrichment scores (ES) across severity and previously identified asthma transcriptome‐associated clusters (TACs). Results Macrophage numbers were significantly decreased in severe asthma compared to mild‐moderate asthma and healthy volunteers. The ES for most modules were also significantly reduced in severe asthma except for 3 associated with inflammatory responses driven by TNF and Toll‐like receptors via NF‐κB, eicosanoid biosynthesis via the lipoxygenase pathway and IL‐2 biosynthesis (all P < .01). Sputum macrophage number and the ES for most macrophage signatures were higher in the TAC3 group compared to TAC1 and TAC2 asthmatics. However, a high enrichment was found in TAC1 for 3 modules showing inflammatory pathways linked to Toll‐like and TNF receptor activation and arachidonic acid metabolism (P < .001) and in TAC2 for the inflammasome and interferon signalling pathways (P < .001). Data were validated in the ADEPT cohort. Module analysis provides additional information compared to conventional M1 and M2 classification. TR‐Mφ were enriched in TAC3 and associated with mitochondrial function. Conclusions Macrophage activation is attenuated in severe granulocytic asthma highlighting defective innate immunity except for specific subsets characterized by distinct inflammatory pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.