By making use of the concept of basic (or q-) calculus, various families of q-extensions of starlike functions of order α in the open unit disk U were introduced and studied from many different viewpoints and perspectives. In this paper, we first investigate the relationship between various known classes of q-starlike functions that are associated with the Janowski functions. We then introduce and study a new subclass of q-starlike functions that involves the Janowski functions. We also derive several properties of such families of q-starlike functions with negative coefficients including (for example) distortion theorems.
By using a certain general conic domain as well as the quantum (or q-) calculus, here we define and investigate a new subclass of normalized analytic and starlike functions in the open unit disk U . In particular, we find the Hankel determinant and the Toeplitz matrices for this newly-defined class of analytic q-starlike functions. We also highlight some known consequences of our main results.
The main purpose of this article is to find the upper bound of the third Hankel determinant for a family of q-starlike functions which are associated with the Ruscheweyh-type q-derivative operator. The work is motivated by several special cases and consequences of our main results, which are pointed out herein.
By making use of the concept of basic (or q-) calculus, various families of q-extensions of starlike functions, which are associated with the Janowski functions in the open unit disk U, were introduced and studied from many different viewpoints and perspectives. In this paper, we first investigate the relationship between various known families of q-starlike functions which are associated with the Janowski functions. We then introduce and study a new subclass of q-starlike functions which involves the Janowski functions and is related with the conic domain. We also derive several properties of such families of q-starlike functions with negative coefficients including (for example) sufficient conditions, inclusion results and distortion theorems. In the last section on conclusion, we choose to point out the fact that the results for the q-analogues, which we consider in this article for 0 < q < 1, can easily (and possibly trivially) be translated into the corresponding results for the (p, q)-analogues (with 0 < q < p 1) by applying some obvious parametric and argument variations, the additional parameter p being redundant. f (0) = f (0) − 1 = 0.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.