We present a detailed analysis of Raman and infrared (IR) phonon spectra of strongly luminescent nonstoichiometric M−In−S (M = Cu, Ag, Hg) and core/shell M−In-S/ZnS nanocrystals (NCs) of small size (d ≈ 2−4 nm), formed by means of aqueous colloidal chemistry under mild conditions. Despite presumably similar factors determining position and broadening of the Raman and X-ray diffraction (XRD) peaks, phonon spectra are shown to be more sensitive to NC composition and crystals structure. The spectral Raman pattern of these strongly Mdeficient M−In-S NCs is different from that of the corresponding stoichiometric phases, e.g., CuInS 2 or AgIn 5 S 8 , and excludes its assignment to relevant binary sulfides, e.g., In 2 S 3 . Resonant behavior of relative peak intensities in Raman spectra is different from that of larger-size stoichiometric NCs and bulk samples studied before, while the temperature dependence reveals an analogous enhancement of the highest-frequency LO modes supporting an unambiguous assignment of the latter. Therefore, we conclude that the Raman spectra observed are characteristic of the specific structure of these highly nonstoichiometric small NCs. IR modes of these NCs occur in the same frequency range as the Raman ones but at higher frequencies than the IR phonons in bulk material. The IR spectra are less characteristic, compared to Raman ones, revealing more similarity among the three NC compounds and with the bulk counterparts.
Cu-Zn-Sn-Te (CZTTe) is an inexpensive quaternary semiconductor that has not been investigated so far, unlike its intensively studied CZTS and CZTSe counterparts, although it may potentially have desirable properties for solar energy conversion, thermoelectric, and other applications. Here, we report on the synthesis of CZTTe nanocrystals (NCs) via an original low-cost, low-temperature colloidal synthesis in water, using a small-molecule stabilizer, thioglycolic acid. The absorption edge at about 0.8–0.9 eV agrees well with the value expected for Cu2ZnSnTe4, thus suggesting CZTTe to be an affordable alternative for IR photodetectors and solar cells. As the main method of structural characterization multi-wavelength resonant Raman spectroscopy was used complemented by TEM, XRD, XPS as well as UV-vis and IR absorption spectroscopy. The experimental study is supported by first principles density functional calculations of the electronic structure and phonon spectra. Even though the composition of NCs exhibits a noticeable deviation from the Cu2ZnSnTe4 stoichiometry, a common feature of multinary NCs synthesized in water, the Raman spectra reveal very small widths of the main phonon peak and also multi-phonon scattering processes up to the fourth order. These factors imply a very good crystallinity of the NCs, which is further confirmed by high-resolution TEM.
The synthesis of (Cu,Ag)-Zn-Sn-S (CAZTS) and Ag-Zn-Sn-S (AZTS) nanocrystals (NCs) by means of “green” chemistry in aqueous solution and their detailed characterization by Raman spectroscopy and several complementary techniques are reported. Through a systematic variation of the nominal composition and quantification of the constituent elements in CAZTS and AZTS NCs by X-ray photoemission spectroscopy (XPS), we identified the vibrational Raman and IR fingerprints of both the main AZTS phase and secondary phases of Ag-Zn-S and Ag-Sn-S compounds. The formation of the secondary phases of Ag-S and Ag-Zn-S cannot be avoided entirely for this type of synthesis. The Ag-Zn-S phase, having its bandgap in near infrared range, is the reason for the non-monotonous dependence of the absorption edge of CAZTS NCs on the Ag content, with a trend to redshift even below the bandgaps of bulk AZTS and CZTS. The work function, electron affinity, and ionization potential of the AZTS NCs are derived using photoelectron spectroscopy measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.