Cannabinoids, mainly cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC), are the most studied group of compounds obtained from Cannabis sativa because of their several pharmaceutical properties. Current evidence suggests a crucial role of cannabinoids as potent anti-inflammatory agents for the treatment of chronic inflammatory diseases; however, the mechanisms remain largely unclear. Cytokine storm, a dysregulated severe inflammatory response by our immune system, is involved in the pathogenesis of numerous chronic inflammatory disorders, including coronavirus disease 2019 (COVID-19), which results in the accumulation of pro-inflammatory cytokines. Therefore, we hypothesized that CBD and THC reduce the levels of pro-inflammatory cytokines by inhibiting key inflammatory signaling pathways. The nucleotide-binding and oligomerization domain (NOD)-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome signaling has been implicated in a variety of chronic inflammatory diseases, which results in the release of pyroptotic cytokines, interleukin-1β (IL-1β) and IL-18. Likewise, the activation of the signal transducer and activator of transcription-3 (STAT3) causes increased expression of pro-inflammatory cytokines. We studied the effects of CBD and THC on lipopolysaccharide (LPS)-induced inflammatory response in human THP-1 macrophages and primary human bronchial epithelial cells (HBECs). Our results revealed that CBD and, for the first time, THC significantly inhibited NLRP3 inflammasome activation following LPS + ATP stimulation, leading to a reduction in the levels of IL-1β in THP-1 macrophages and HBECs. CBD attenuated the phosphorylation of nuclear factor-κB (NF-κB), and both cannabinoids inhibited the generation of oxidative stress post-LPS. Our multiplex ELISA data revealed that CBD and THC significantly diminished the levels of IL-6, IL-8, and tumor necrosis factor-α (TNF-α) after LPS treatment in THP-1 macrophages and HBECs. In addition, the phosphorylation of STAT3 was significantly downregulated by CBD and THC in THP-1 macrophages and HBECs, which was in turn attributed to the reduced phosphorylation of tyrosine kinase-2 (TYK2) by CBD and THC after LPS stimulation in these cells. Overall, CBD and THC were found to be effective in alleviating the LPS-induced cytokine storm in human macrophages and primary HBECs, at least via modulation of NLRP3 inflammasome and STAT3 signaling pathways. The encouraging results from this study warrant further investigation of these cannabinoids in vivo.
Fibrosis is a condition characterized by thickening or/and scarring of various tissues. Fibrosis may develop in almost all tissues and organs, and it may be one of the leading causes of morbidity and mortality. It provokes excessive scarring that excels the usual wound healing response to trauma in numerous organs. Currently, very little can be done to prevent tissue fibrosis, and it is almost impossible to reverse it. Anti-inflammatory and immunosuppressive drugs are among the few treatments that may be efficient in preventing fibrosis. Numerous publications suggest that cannabinoids and extracts of Cannabis sativa have potent anti-inflammatory and anti-fibrogenic properties. In this review, we describe the types and mechanisms of fibrosis in various tissues and discuss various strategies for prevention and dealing with tissue fibrosis. We further introduce cannabinoids and their potential for the prevention and treatment of fibrosis, and therefore for extending healthy lifespan.
Colorectal cancer is a major public health problem. Unfortunately, currently, no effective curative option exists for this type of malignancy. The most promising cancer treatment nowadays is immunotherapy which is also called biological or targeted therapy. This type of therapy boosts the patient's immune system ability to fight the malignant tumor. However, cancer cells may become resistant to immunotherapy and escape immune surveillance by obtaining genetic alterations. Therefore, new treatment strategies are required. In the recent decade, several reports suggest the effectiveness of cannabinoids and Cannabis sativa extracts for inhibiting cancer proliferation in vitro and in vivo, including intestinal malignancies. Cannabinoids were shown to modulate the pathways involved in cell proliferation, angiogenesis, programmed cell death and metastasis. Because of that, they are proposed as adjunct therapy for many malignancies. By far less information exists on the potential of the use of cannabis in combination with immunotherapy. Here, we explore the possibility of the use of cannabinoids for modulation of immunotherapy of colon cancer and discuss possible advantages and limitations.
Cannabinoids, mainly cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC), are the most studied group of compounds obtained from Cannabis sativa because of their several pharmaceutical properties. Current evidence suggests a crucial role of cannabinoids as potent anti-inflammatory agents for the treatment of chronic inflammatory diseases; however, the mechanisms remain largely unclear. Cytokine storm, a dysregulated severe inflammatory response by our immune system, is involved in the pathogenesis of numerous chronic inflammatory disorders, including coronavirus disease 2019 (COVID-19), which results in the accumulation of pro-inflammatory cytokines. Therefore, we hypothesized that CBD and THC reduce the levels of pro-inflammatory cytokines by inhibiting key inflammatory signalling pathways. The nucleotide-binding and oligomerization domain (NOD)-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome signalling has been implicated in a variety of chronic inflammatory diseases, which results in the release of pyroptotic cytokines, interleukin-1β (IL-1β) and IL-18. Likewise, the activation of the signal transducer and activator of transcription-3 (STAT3) causes increased expression of pro-inflammatory cytokines. We studied the effects of CBD and THC on lipopolysaccharide (LPS)-induced inflammatory response in human THP-1 macrophages and primary human bronchial epithelial cells (HBECs). Our results revealed that CBD and, for the first time, THC, significantly inhibited NLRP3 inflammasome activation following LPS + ATP stimulation, leading to a reduction in the levels of IL-1β in THP-1 macrophages and HBECs. CBD attenuated the phosphorylation of nuclear factor-κB (NF-κB) and both cannabinoids inhibited the generation of oxidative stress post-LPS. Our multiplex ELISA data revealed that CBD and THC significantly diminished the levels of IL-6, IL-8, and tumor necrosis factor-α (TNF-α) after LPS treatment in THP-1 macrophages and HBECs. In addition, the phosphorylation of STAT3 was significantly downregulated by CBD and THC in THP-1 macrophages and HBECs, which was in turn, attributed to the reduced phosphorylation of tyrosine kinase-2 (TYK2) by CBD and THC after LPS stimulation in these cells. Overall, CBD and THC were found to be effective in alleviating the LPS-induced cytokine storm in human macrophages and primary HBECs, at least via modulation of NLRP3 inflammasome and STAT3 signalling pathways. The encouraging results from this study warrant further investigation of these cannabinoids in vivo.
Inflammation is the response of the innate immune system to any type of injury. Although acute inflammation is critical for survival, dysregulation of the innate immune response leads to chronic inflammation. Many synthetic anti-inflammatory drugs have side effects, and thus, natural anti-inflammatory compounds are still needed. Cannabis sativa L. may provide a good source of anti-inflammatory molecules. Here, we tested the anti-inflammatory properties of cannabis extracts and pure cannabinoids in lipopolysaccharide (LPS)-induced inflammation in human THP-1 macrophages. We found that pre-treatment with cannabidiol (CBD), delta-9-tetrahydrocannabinol (THC), or extracts containing high levels of CBD or THC reduced the level of induction of various cytokines. The CBD was more efficient than THC, and the extracts were more efficient than pure cannabinoids. Finally, IL-6, IL-10, and MCP-1 cytokines were most sensitive to pre-treatments with CBD and THC, while IL-1β, IL-8, and TNF-α were less responsive. Thus, our work demonstrates the potential of the use of cannabinoids or/and cannabis extracts for the reduction of inflammation and establishes IL-6 and MCP-1 as the sensitive markers for the analysis of the effect of cannabinoids on inflammation in macrophages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.