Recently, thin AlAs capping layers (CLs) on InAs quantum dot solar cells (QDSCs) have been shown to yield better photovoltaic efficiency compared to traditional QDSCs. Although it has been proposed that this improvement is due to the suppression of the capture of photogenerated carriers through the wetting layer (WL) states by a de-wetting process, the mechanisms that operate during this process are not clear. In this work, a structural analysis of the WL characteristics in the AlAs/InAs QD system with different CL-thickness has been made by scanning transmission electron microscopy techniques. First, an exponential decline of the amount of InAs in the WL with the CL thickness increase has been found, far from a complete elimination of the WL. Instead, this reduction is linked to a higher shield effect against QD decomposition. Second, there is no compositional separation between the WL and CL, but rather single layer with a variable content of InAlGaAs. Both effects, the high intermixing and WL reduction cause a drastic change in electronic levels, with the CL making up of 1–2 monolayers being the most effective configuration to reduce the radiative-recombination and minimize the potential barriers for carrier transport.
Superlattice structures (SLs) with type-II (GaAsSb/GaAsN) and -I (GaAsSbN/GaAs) band alignments have received a great deal of attention for multijunction solar cell (MJSC) applications, as they present a strongly intensified luminescence and a significant external quantum efficiency (EQE), with respect to the GaAsSbN bulk layers. Despite the difficulties in characterizing the distribution of N in dilute III-V nitride alloys, in this work we have obtained N-compositional mappings before and after rapid thermal annealing (RTA) in both types of structures, by using a recent methodology based on the treatment of different scanning transmission electron microscopy (STEM) imaging configurations. Texture analysis by gray level co-occurrence matrixes (GLCM) and the measurement of the degree of clustering are used to compare and evaluate the compositional inhomogeneities of N. Comparison with the Sb maps shows that there is no spatial correlation between the N and Sb distributions. Our results reveal that a better homogeneity of N is obtained in type-I SLs, but at the expense of a higher tendency of Sb agglomeration, and the opposite occurs in type-II SLs. The RTA treatments improve the uniformity of N and Sb in both designs, with the annealed sample of type-II SLs being the most balanced structure for MJSCs.
The use of thin AlA capping layers (CLs) on InAs quantum dots (QDs) has recently received considerable attention due to improved photovoltaic performance in QD solar cells. However, there is little data on the structural changes that occur during capping and their relation to different growth conditions. In this work, we studied the effect of AlA capping growth rate (CGR) on the structural features of InAs QDs in terms of shape, size, density, and average content. As will be shown, there are notable differences in the characteristics of the QDs upon changing CGR. The Al distribution analysis in the CL around the QDs was revealed to be the key. On the one hand, for the lowest CGR, Al has a homogeneous distribution over the entire surface, but there is a large thickening of the CL on the sides of the QD. As a result, the QDs are lower, lenticular in shape, but richer in In. On the other hand, for the higher CGRs, Al accumulates preferentially around the QD but with a more uniform thickness, resulting in taller QDs, which progressively adopt a truncated pyramidal shape. Surprisingly, intermediate CGRs do not improve either of these behaviors, resulting in less enriched QDs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.