In this paper, we employ the Lagrange multiplier (LM) principle to test parameter homogeneity across cross-section units in panel data models. The test can be seen as a generalization of the Breusch-Pagan test against random individual effects to all regression coefficients. While the original test procedure assumes a likelihood framework under normality, several useful variants of the LM test are presented to allow for non-normality, heteroscedasticity and serially correlated errors. Moreover, the tests can be conveniently computed via simple artificial regressions. We derive the limiting distribution of the LM test and show that if the errors are not normally distributed, the original LM test is asymptotically valid if the number of time periods tends to infinity. A simple modification of the score statistic yields an LM test that is robust to non-normality if the number of time periods is fixed. Further adjustments provide versions of the LM test that are robust to heteroscedasticity and serial correlation. We compare the local power of our tests and the statistic proposed by Pesaran and Yamagata. The results of the Monte Carlo experiments suggest that the LM-type test can be substantially more powerful, in particular, when the number of time periods is small.
A functional dynamic factor model for time-dependent functional data is proposed. We decompose a functional time series into a predictive low-dimensional common component consisting of a finite number of factors and an infinite-dimensional idiosyncratic component that has no predictive power. The conditions under which all model parameters, including the number of factors, become identifiable are discussed. Our identification results lead to a simple-to-use two-stage estimation procedure based on functional principal components. As part of our estimation procedure, we solve the separation problem between the common and idiosyncratic functional components. In particular, we obtain a consistent information criterion that provides joint estimates of the number of factors and dynamic lags of the common component. Finally, we illustrate the applicability of our method in a simulation study and to the problem of modeling and predicting yield curves. In an out-of-sample experiment, we demonstrate that our model performs well compared to the widely used term structure Nelson-Siegel model for yield curves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.