The title NiII complex, Ni(L)(LH2) (1), where LH2 is S-2-methybenzyl-β-N-(2-hydroxy-3-methoxybenzylmethylene) dithiocarbazate, was isolated from the reaction of Ni(acetate)2·4H2O and two molar equivalents of LH2. The complex was characterized by elemental analysis, spectroscopy (IR and UV) as well as by a single-crystal X-ray structure determination. The nickel(II) center is coordinated within a cis-NOS2 donor set that defines a square planar geometry. Three donor atoms, i.e., N, O, and S, are provided by a doubly deprotonated S-2-methybenzyl-β-N-(2-hydroxy-3-methoxybenzylmethylene) dithiocarbazate ligand while the fourth donor, i.e., a thione-S, comes from the neutral form of the dithiocarbazate ligand. In the LH2 ligand, an intramolecular hydroxy-O-H…N(imine) hydrogen bond is found. There is also an intra-ligand, charge assisted amine-N-H…O(phenoxide) hydrogen bond. A notable feature of the molecular packing is the formation of supramolecular chains sustained by π…π stacking interactions whereby the interacting rings are the five- and six-membered chelate and methoxybenzene rings. The chains are connected into a three-dimensional architecture by methyl-C-H…O(methoxy), methoxy-C-H…S(ester), and tolyl-C-H…π(tolyl) interactions.
The title CuII complex, [Cu(C13H11N2OS2)2], features a trans-N2S2 donor set as a result of the CuII atom being located on a crystallographic centre of inversion and being coordinated by thiolate-S and imine-N atoms derived from two dithiocarbazate anions. The resulting geometry is distorted square-planar. In the crystal, π(chelate ring)–π(furyl) [inter-centroid separation = 3.6950 (14) Å and angle of inclination = 5.33 (13)°] and phenyl-C—H...π(phenyl) interactions sustain supramolecular layers lying parallel to (\overline{1}02). The most prominent interactions between layers, as confirmed by an analysis of the calculated Hirshfeld surface, are phenyl-H...H(phenyl) contacts. Indications for Cu...Cg(furyl) contacts (Cu...Cg = 3.74 Å) were also found. Interaction energy calculations suggest the contacts between molecules are largely dispersive in nature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.