Scientific workflow applications are collections of several structured activities and finegrained computational tasks. Scientific workflow scheduling in cloud computing is a challenging research topic due to its distinctive features. In cloud environments, it has become critical to perform efficient task scheduling resulting in reduced scheduling overhead, minimized cost and maximized resource utilization while still meeting the user-specified overall deadline. This paper proposes a strategy, Dynamic Scheduling of Bag of Tasks based workflows (DSB), for scheduling scientific workflows with the aim to minimize financial cost of leasing Virtual Machines (VMs) under a userdefined deadline constraint. The proposed model groups the workflow into Bag of Tasks (BoTs) based on data dependency and priority constraints and thereafter optimizes the allocation and scheduling of BoTs on elastic, heterogeneous and dynamically provisioned cloud resources called VMs in order to attain the proposed method's objectives. The proposed approach considers pay-asyou-go Infrastructure as a Service (IaaS) clouds having inherent features such as elasticity, abundance, heterogeneity and VM provisioning delays. A trace-based simulation using benchmark scientific workflows representing real world applications, demonstrates a significant reduction in workflow computation cost while the workflow deadline is met. The results validate that the proposed model produces better success rates to meet deadlines and cost efficiencies in comparison to adapted state-of-the-art algorithms for similar problems.
Cloud computing has emerged as a high-performance computing environment with a large pool of abstracted, virtualized, flexible, and on-demand resources and services. Scheduling of scientific workflows in a distributed environment is a well-known NP-complete problem and therefore intractable with exact solutions. It becomes even more challenging in the cloud computing platform due to its dynamic and heterogeneous nature. The aim of this study is to optimize multi-objective scheduling of scientific workflows in a cloud computing environment based on the proposed metaheuristic-based algorithm, Hybrid Bio-inspired Metaheuristic for Multi-objective Optimization (HBMMO). The strong global exploration ability of the nature-inspired metaheuristic Symbiotic Organisms Search (SOS) is enhanced by involving an efficient list-scheduling heuristic, Predict Earliest Finish Time (PEFT), in the proposed algorithm to obtain better convergence and diversity of the approximate Pareto front in terms of reduced makespan, minimized cost, and efficient load balance of the Virtual Machines (VMs). The experiments using different scientific workflow applications highlight the effectiveness, practicality, and better performance of the proposed algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.