Background:
Berberine (BBR), an alkaloidal compound found in many plants, is widely used for hundreds of years in the traditional system of Chinese medicine.
Objective/Aim:
The present review is aimed to summarize the potential of Berberine in the amelioration of various neurological disorders.
Methods:
The collection of data for the compilation of this review work was searched in PubMed Scopus, Google Scholar, and Science Direct. Of late, researchers are more focused on its beneficial role in neurodegenerative diseases.
Result:
BBR has proven its protective role in numerous neurotoxicity models including, oxygen-glucose deprivation, mercury-induced, neurodegenerative model by ibotenic acid, and hypoxia caused by COCl2. BBR treatment averts the generation of reactive oxygen species in the oxygen-glucose deprivation model. Further, it subdues cytochrome c along with the divulge of apoptosis-inducing factors that indicate its beneficial action in the management of stroke. BBR diminished hydrogen peroxide-induced neuronal damage by enhancing the PI3k / Akt / Nrf-2 based pathway and showed a preventive impact on neurites of SH-SY5Y cells by averting the formation of ROS and inhibiting apoptosis. The impact of BBR on neurological disorder using a transgenic AD type mouse strain (TgCRND8) showed a reduction in the piling up of amyloid-β plaque. In mice, administration of BBR in the dose range of 5-10m/kg has been reported to raise the levels of serotonin (47%), dopamine (31%), and norepinephrine (29%) in CNS to allay depression.
Conclusion:
The present review is aimed to summarize the potential of Berberine in the amelioration of various neurological disorders.
Epilepsy is the chronic neurological disorder affecting 70 million people globally. One of the fascinating attributes of brain microvasculature is the (BBB), which controls a chain of distinct features that securely regulate the molecules, ions, and cells movement between the blood and the parenchyma. The barrier's integrity is of paramount importance and essential for maintaining brain homeostasis, as it offers both physical and chemical barriers to counter pathogens and xenobiotics. Dysfunction of various transporters in the (BBB), mainly ATP binding cassette (ABC), is considered to play a vital role in hampering the availability of antiepileptic drugs into the brain. ABC (ATP-binding cassette) transporters constitute a most diverse protein superfamily, which plays an essential part in various biological processes, including cell homeostasis, cell signaling, uptake of nutrients, and drug metabolism. Moreover, it plays a crucial role in neuroprotection by out-flowing various internal and external toxic substances from the interior of a cell, thus decreasing their buildup inside the cell. In humans, forty-eight ABC transporters have been acknowledged and categorized into subfamilies A to G based on their phylogenetic analysis. ABC subfamilies B, C, and G, impart a vital role at the BBB in guarding the brain against the entrance of various xenobiotic and their buildup. The illnesses of the central nervous system have received a lot of attention lately Owing to the existence of the BBB, the penetration effectiveness of most CNS medicines into the brain parenchyma is very limited (BBB). In the development of neurological therapies, BBB crossing for medication delivery to the CNS continues to be a major barrier. Nanomaterials with BBB cross ability have indeed been extensively developed for the treatment of CNS diseases due to their advantageous properties. This review will focus on multiple possible factors like inflammation, oxidative stress, uncontrolled recurrent seizures, and genetic polymorphisms that result in the deregulation of ABC transporters in epilepsy and nanotechnology enabled delivery across BBB in epilepsy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.