Epigallocatechin gallate (EGCG), a green tea catechin, has gained the attention of current study due to its excellent health‐promoting effects. It possesses anti‐obesity, antimicrobial, anticancer, anti‐inflammatory activities, and is under extensive investigation in functional foods for improvement. It is susceptible to lower stability, lesser bioavailability, and lower absorption rate due to various environmental, processing, formulations, and gastrointestinal conditions of the human body. Therefore, it is the foremost concern for the researchers to enhance its bioactivity and make it the most suitable therapeutic compound for its clinical applications. In the current review, factors affecting the bioavailability of EGCG and the possible strategies to overcome these issues are reviewed and discussed. This review summarizes structural modifications and delivery through nanoparticle‐based approaches including nano‐emulsions, encapsulations, and silica‐based nanoparticles for effective use of EGCG in functional foods. Moreover, recent advances to enhance EGCG therapeutic efficacy by specifically targeting its molecules to increase its bioavailability and stability are also described. Practical applications The main green tea constituent EGCG possesses several health‐promoting effects making EGCG a potential therapeutic compound to cure ailments. However, its low stability and bioavailability render its uses in many disorders. Synthesizing EGCG prodrugs by structural modifications helps against its low bioavailability and stability by overcoming premature degradation and lower absorption rate. This review paper summarizes various strategies that benefit EGCG under different physiological conditions. The esterification, nanoparticle approaches, silica‐based EGCG‐NPs, and EGCG formulations serve as ideal EGCG modification strategies to deliver superior concentrations with lesser toxicity for its efficient penetration and absorption across cells both in vitro and in vivo. As a result of EGCG modifications, its bioactivities would be highly improved at lower doses. The protected or modified EGCG molecule would have enhanced potential effects and stability that would contribute to the clinical applications and expand its use in various food and cosmetic industries.
The “gut fungal microbiome” maintains the immune system, homeostasis, and various physiological functions of an organism. Different factors shape and affect gut fungal diversity and community composition, such as environment, habitat type, food resources, and seasons during migration. Wild birds amid migration are exposed to different habitats with different environments, available food resources, and seasons, which may substantially impact their gut fungal community composition and diversity. The hooded crane (Grus monacha) is a known migratory bird that migrates over long distances and is exposed to varied habitats with different environments and food types. We investigated the differences in gut fungal diversity and community composition between wintering and stopover sites amid three migratory seasons. We deduced the gut fungal pathogenic diversity and community composition during winter, fall, and spring by using high throughput sequencing (Illumina Mi-seq), and the internal transcribed region 2 (ITS2) was examined. Samples were collected from Shengjin Lake in the winter and Lindian during the fall and spring. The dominant fungal phyla found across the three seasons were Ascomycota, Basidiomycota, Zygomycota, and Rozellomycota. The gut fungal alpha diversity showed significant shifts during winter at the wintering site compared with the fall and spring seasons at the stopover site. The fungal community composition exhibited a significant change across the three seasons (ANOSIM p = 0.001). The results also demonstrated that the diversity and relative abundance of potential pathogens also showed divergence in winter compared to fall and spring. This study provides the basis for understanding the discrepancy in gut fungal diversity and community composition during migratory seasons at both wintering and stopover grounds. It also suggests that conservation measures should be applied to the conservation of hooded cranes and other wild birds, as the risk of cross-infection increases during seasonal migration.
Background The composition of intestinal microflora in animals is affected by cross-species transmission. In a nature reserve, the foraging sites of waterbirds are relatively fixed, but frequently close to residential areas and can also be visited by domestic fowls. It is easy to result in the trans-species-flock dispersal of gut microbes between the wild birds and domestic fowls. The effects of the variable foraging site distances on the gut microbe structures of the waterbirds and the sympatric domestic fowls are currently unclear, and further research is required to evaluate the impacts of geographic location on cross-infection. Methods Illumina high-throughput sequencing and bioinformatics analysis software were utilized to compare and analyze the composition of gut microbes from the fecal samples of Hooded Cranes (HC; Grus monacha) and two groups of Domestic Ducks (Anas platyrhynchos domesticus) that foraged at 1 km (ducks in near areas, D-N), and 4 km (ducks in far areas, D-F) away from the habitats of the Hooded Cranes at Shengjin Lake, China. Results The results showed that there were significant differences in the alpha-diversity of the gut bacteria in the HC, D-N, and D-F samples under the interspecific distance factor. The dominant bacterial phyla, Cyanobacteria and Proteobacteria, showed correlations with distance for each host. The D-N group had more diverse intestinal flora than the D-F, as they were physically closer to the HC and had more indirect contact and cross-transmission of their gut microbes. More potentially pathogenic bacterial sequences, and Operational Taxonomic Units (OTUs) were found in the D-N than in HC and D-F. Conclusions Hooded Cranes and the Domestic Duck populations at variable distances from the cranes showed significant differences in their intestinal bacteria and potentially pathogenic bacteria. The closer the foraging sites were, the easier the intestinal flora spread across species. The results provide a basis for determining the safe distance between wild birds and domestic fowls in a nature reserve.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Simple SummaryChanges in environmental conditions cause animals to adjust their behavioral strategies to survive. We investigated foraging behavior in different habitats of wintering Bewick’s swans. We found that the observed feeding rate was not affected by food density but showed a negative relationship with flock size and disturbance time. Handling time had a negative relationship with food density and flock size, but a positive relationship with disturbance. Searching rate was negatively correlated with food density, flock size, and disturbance time. This provides insight into how wintering waterbirds adapt their foraging behavior in complex environments.AbstractPerceiving how animals adjust their feeding rate under a variety of environmental conditions and understanding the tradeoffs in their foraging strategies are necessary for conservation. The Holling functional response, which describes the relationship of feeding rate and food density to searching rate and handling time, has been applied to a range of waterbirds, especially with regard to Type II functional responses that describe an increasing feeding rate with food density but at a decelerating rate as the curve approaches the asymptote. However, feeding behavior components (feeding rate, searching rate, and handling time) are influenced by factors besides prey density, such as vigilance and flock size. In this study, we aim to elucidate how Bewick’s swans (Cygnus columbianus bewickii) adopt flexible foraging strategies and vary their feeding behavior components in response to disturbance, flock size, and food density. We collected focal sampling data on the foraging behavior of swans that foraged rice grains, foxnut seeds, and tubers in paddy field, foxnut pond, and lake habitats, respectively, in Shengjin and Huangpi lakes during winter from 2016 to 2018. The observed feeding rate was not correlated with food density and displayed a positive relationship with searching rate but negative relationships with handling time, flock size, overall vigilance time, and disturbance time. Handling time was negatively correlated with food density and flock size, yet it increased with disturbance, overall vigilance time, and normal vigilance time. Searching rate was negatively correlated with food density, flock size, and disturbance time. Feeding rate was affected by the combined effects of handling time and searching rate, as well as food density and searching rate. The shape of the observed functional response could not be fitted to Holling’s disc equation. However, the disc equation of the predicted feeding rate of wintering swans was found to be driven by food density. This provides insight into how wintering waterbirds adopt appropriate foraging strategies in response to complicated environmental factors, which has implications for wildlife conservation and habitat management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.