Neutronic and burnup assessment of an LWR based SMR core with Transuranic Fuel (TRU) was carried out and compared with UO2 fuel and mixed oxide fuel (MOX) for different core composition and configurations. Eight different cores were modeled by changing the fuel composition and loading pattern of four different fuel assemblies namely UO2, MOX, TRU, and annular UO2 fuel and simulated in open-source Monte-Carlo code OpenMC. The radial neutron flux distribution and maximum to average flux ratio were studied. The lowest flux ratio was found in Annular-2 models whereas TRU models showed the highest value. The effect of enrichment, fuel burnup, moderator to fuel ratio, and soluble boron concentration on effective multiplication factor (k_eff) was investigated. Burnup analysis of fissionable materials and neutron poison was performed. Burnup dependent fission rate of U-235, Pu-239, and Pu-241 was also studied. The composition of spent fuel at EOC was investigated and lower minor actinides (MAs) production was observed for TRU models. This analysis would help to determine the effectiveness and feasibility of these potential core configurations and to predict their neutronic behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.