SummaryMore than 100 hydropower dams have already been built in the Amazon basin and numerous proposals for further dam constructions are under consideration. The accumulated negative environmental effects of built and proposed dams, if constructed, will trigger massive hydrophysical and biotic disturbances that will impact the Amazon basin's floodplains, estuary, and sediment plume. By introducing a Dam Environmental Vulnerability Index (DEVI) we quantify the current and potential impacts of dams in the basin. The scale of foreseeable environmental degradation indicates the need for collective action among nations and states to avoid cumulative, far-field impacts. We suggest institutional innovations to assess and avoid the likely impoverishment of Amazon rivers.
Onset and end of the rainy season in the Amazon Basin are examined for the period 1979-96. The onset and end dates are determined by averaging daily rainfall data from many stations, and then constructing 5-day averages (pentads). Onset (end) is defined as the pentad in which rainfall exceeds (falls below) a given threshold, provided that average rainfall was well below (above) the threshold for several pentads preceding onset (end), and well above (below) the threshold for several pentads after onset (end). For the criteria chosen, the clima-tological onset progresses toward the southeast, arriving in mid-October, and then toward the mouth of the Amazon, arriving near the end of the year. The end dates are earliest in the southeast and progress toward the north, but withdrawal is slower than onset. The onset dates, however, are quite sensitive to changes in the threshold. If the threshold is doubled, for example, the sense of onset is reversed, with onset occurring toward the northwest. Changes in threshold do not change the direction of the progression of the end of the rainy season. The central Amazon shows the largest variation in the date of onset. In several years, onset in the southeast occurs before that in the central Amazon, but onset near the mouth is always latest. There is an unexpectedly low relationship between the length of the rainy season and total accumulation. Likewise, there is little relationship between the onset (and end) date and the total accumulation. Composites of outgoing longwave radiation and the low-level wind field show that in the central Amazon, onset is associated with an anomalous anticyclone and enhanced trade winds in the Atlantic. Near the mouth of the Amazon, however, onset is associated with large-scale northerly anomalies, and the zonal component of the trade winds is reduced. There is an apparent association between sea surface temperature anomalies in the tropical Atlantic and Pacific and the pentads of onset and end of the rainy season in the northern and central Amazon, and near its mouth. The sense is that a warm Pacific and cold Atlantic result in a delayed onset and early withdrawal. Although the strong El Niño of 1982/83 and La Niña 1988/89 were examples of a delayed and early onset, respectively, the relationships it still holds these years are not considered.
International audienceThis study addresses the quantification of the Amazon River sediment budget which has been assessed by looking at data from a suspended sediment discharge monitoring network and remote sensing estimates derived from MODIS spaceborne sensor. Surface suspended sediment concentration has been sampled every 10 days since 1995 (390 samples available) by the international HYBAM program at the Óbidos station which happens to be the last gauged station of the Amazon River before the Atlantic Ocean. Remote sensing reflectance is derived from continuous time series of 554 MODIS images available since 2000 and calibrated with the HYBAM field measurements. Discharge shows a weak correlation with the suspended sediment concentration during the annual hydrological cycle, preventing us from computing sediment discharge directly from the water discharge. Accordingly, river sediment discharge is assessed by multiplying daily water discharge measurements by the suspended sediment concentration averaged on a monthly basis. Comparisons of annual sediment discharge assessed using both field and satellite datasets show a very good agreement with a mean difference lower than 1%. Both field and satellite-derived estimates of the sediment concentration of the Amazon River are combined to get an uninterrupted monthly average suspended sediment discharge from 1995 to 2007. Unlike the water discharge which exhibits a steady trend over the same period at Óbidos, the 12-year suspended sediment discharge increases by about 20% since 1995, significant at the 99% level. In particular, the interannual variability is much more significant in the sediment discharge than in the river discharge
Abstract. The aim of this study is to evaluate the ability of the ORCHIDEE land surface model to simulate streamflows over each sub-basin of the Amazon River basin. For this purpose, simulations are performed with a routing module including the influence of floodplains and swamps on river discharge and validated against on-site hydrological measurements collected within the HYBAM observatory over the 1980-2000 period. When forced by the NCC global meteorological dataset, the initial version of ORCHIDEE shows discrepancies with ORE HYBAM measurements with underestimation by 15 % of the annual mean streamflow atÓbidos hydrological station. Consequently, several improvements are incrementally added to the initial simulation in order to reduce those discrepancies. First, values of NCC precipitation are substituted by ORE HYBAM daily in-situ rainfall observations from the meteorological services of Amazonian countries, interpolated over the basin. It highly improves the simulated streamflow over the northern and western parts of the basin, whereas streamflow over southern regions becomes overestimated, probably due to the extension of rainy spots that may be exaggerated by our interpolation method, or to an underestimation of simulated evapotranspiration when compared to flux tower measurements. Second, the initial map of maximal fractions of floodplains and swamps which largely underestimates floodplains areas over the main stem of the Amazon River and over the region of Llanos de Moxos in Bolivia, is substituted by a new one with a better agreement with different estimates over the basin. Simulated monthly water height is consequently better represented in ORCHIDEE when compared to Topex/Poseidon measurements over the main stem of the Amazon. Finally, a calibration of the time constant of the floodplain reservoir is performed to adjust the mean simulated seasonal peak flow at Obidos in agreement with the observations.Published by Copernicus Publications on behalf of the European Geosciences Union. M. Guimberteau et al.: Amazon discharge simulation using ORCHIDEE forced by new datasets
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.