The esophageal submucosal glands (SMG) secrete HCO(3)(-) and mucus into the esophageal lumen, where they contribute to acid clearance and epithelial protection. This study characterized the ion transport mechanisms linked to HCO(3)(-) secretion in SMG. We localized ion transporters using immunofluorescence, and we examined their expression by RT-PCR and in situ hybridization. We measured HCO(3)(-) secretion by using pH stat and the isolated perfused esophagus. Using double labeling with Na(+)-K(+)-ATPase as a marker, we localized Na(+)-coupled bicarbonate transporter (NBCe1) and Cl(-)-HCO(3)(-) exchanger (SLC4A2/AE2) to the basolateral membrane of duct cells. Expression of cystic fibrosis transmembrane regulator channel (CFTR) was confirmed by immunofluorescence, RT-PCR, and in situ hybridization. We identified anion exchanger SLC26A6 at the ducts' luminal membrane and Na(+)-K(+)-2Cl(-) (NKCC1) at the basolateral membrane of mucous and duct cells. pH stat experiments showed that elevations in cAMP induced by forskolin or IBMX increased HCO(3)(-) secretion. Genistein, an activator of CFTR, which does not increase intracellular cAMP, also stimulated HCO(3)(-) secretion, whereas glibenclamide, a Cl(-) channel blocker, and bumetanide, a Na(+)-K(+)-2Cl(-) blocker, decreased it. CFTR(inh)-172, a specific CFTR channel blocker, inhibited basal HCO(3)(-) secretion as well as stimulation of HCO(3)(-) secretion by IBMX. This is the first report on the presence of CFTR channels in the esophagus. The role of CFTR in manifestations of esophageal disease in cystic fibrosis patients remains to be determined.
It is generally accepted that gases such as CO2 cross cell membranes by dissolving in the membrane lipid. No role for channels or pores in gas transport has ever been demonstrated. Here we ask whether expression of the water channel aquaporin-1 (AQP1) enhances the CO2 permeability of Xenopus oocytes. We expressed AQP1 in Xenopus oocytes by injecting AQP1 cRNA, and we assessed CO2permeability by using microelectrodes to monitor the changes in intracellular pH (pHi) produced by adding 1.5% CO2/10 mM[Formula: see text] to (or removing it from) the extracellular solution. Oocytes normally have an undetectably low level of carbonic anhydrase (CA), which eliminates the CO2 hydration reaction as a rate-limiting step. We found that expressing AQP1 (vs. injecting water) had no measurable effect on the rate of CO2-induced pHi changes in such low-CA oocytes: adding CO2 caused pHi to fall at a mean initial rate of 11.3 × 10−4 pH units/s in control oocytes and 13.3 × 10−4 pH units/s in oocytes expressing AQP1. When we injected oocytes with water, and a few days later with CA, the CO2-induced pHi changes in these water/CA oocytes were more than fourfold faster than in water-injected oocytes (acidification rate, 53 × 10−4 pH units/s). Ethoxzolamide (ETX; 10 μM), a membrane-permeant CA inhibitor, greatly slowed the pHi changes (16.5 × 10−4 pH units/s). When we injected oocytes with AQP1 cRNA and then CA, the CO2-induced pHi changes in these AQP1/CA oocytes were ∼40% faster than in the water/CA oocytes (75 × 10−4 pH units/s), and ETX reduced the rates substantially (14.7 × 10−4 pH units/s). Thus, in the presence of CA, AQP1 expression significantly increases the CO2 permeability of oocyte membranes. Possible explanations include 1) AQP1 expression alters the lipid composition of the cell membrane, 2) AQP1 expression causes overexpression of a native gas channel, and/or 3) AQP1 acts as a channel through which CO2 can permeate. Even if AQP1 should mediate a CO2 flux, it would remain to be determined whether this CO2movement is quantitatively important.
Acid-base homeostasis and pH regulation are critical for both normal physiology and cell metabolism and function. The importance of this regulation is evidenced by a variety of physiologic derangements that occur when plasma pH is either high or low. The kidneys have the predominant role in regulating the systemic bicarbonate concentration and hence, the metabolic component of acid-base balance. This function of the kidneys has two components: reabsorption of virtually all of the filtered HCO 3 2 and production of new bicarbonate to replace that consumed by normal or pathologic acids. This production or generation of new HCO 3 2 is done by net acid excretion. Under normal conditions, approximately one-third to one-half of net acid excretion by the kidneys is in the form of titratable acid. The other one-half to two-thirds is the excretion of ammonium. The capacity to excrete ammonium under conditions of acid loads is quantitatively much greater than the capacity to increase titratable acid. Multiple, often redundant pathways and processes exist to regulate these renal functions. Derangements in acid-base homeostasis, however, are common in clinical medicine and can often be related to the systems involved in acid-base transport in the kidneys.
The submucosal glands (SMGs) of the pig esophagus, like the human, secrete mucin and bicarbonate, which help in luminal acid clearance and epithelial protection. The aim of this study was to characterize histochemically the esophageal SMGs and a primary culture obtained from these glands. Tissues and cultures were stained with hematoxylin and eosin, periodic acid Schiff, Alcian blue, lectins, or cytokeratins. In the perfused esophagus, addition of carbachol increased mucin secretion by approximately 2-fold. The results indicate that [1] a method for culturing SMG cells was developed; [2] conventional staining indicates the presence of sulfated, acidic, and neutral mucopolysaccharides in glands and cultures; [3] lectin binding indicates the presence of N-acetyl glucosamine, N-acetyl neuraminic acid, N-acetyl galactosamine, and alpha-L: -fucose in mucous cells and cultures; [4] cytokeratin and lectin staining indicated similarities with Barrett epithelium (columnar metaplasia of the esophagus); and [5] cholinergic agonists enhance mucin secretion and this could play a significant role in esophageal protection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.