Mechanical search is a robotic problem where a robot needs to retrieve a target item that is partially or fullyoccluded from its camera. State-of-the-art approaches for mechanical search either require an expensive search process to find the target item, or they require the item to be tagged with a radio frequency identification tag (e.g., RFID), making their approach beneficial only to tagged items in the environment.We present FuseBot, the first robotic system for RF-Visual mechanical search that enables efficient retrieval of both RFtagged and untagged items in a pile. Rather than requiring all target items in a pile to be RF-tagged, FuseBot leverages the mere existence of an RF-tagged item in the pile to benefit both tagged and untagged items. Our design introduces two key innovations. The first is RF-Visual Mapping, a technique that identifies and locates RF-tagged items in a pile and uses this information to construct an RF-Visual occupancy distribution map. The second is RF-Visual Extraction, a policy formulated as an optimization problem that minimizes the number of actions required to extract the target object by accounting for the probabilistic occupancy distribution, the expected grasp quality, and the expected information gain from future actions.We built a real-time end-to-end prototype of our system on a UR5e robotic arm with in-hand vision and RF perception modules. We conducted over 180 real-world experimental trials to evaluate FuseBot and compare its performance to a state-ofthe-art vision-based system named X-Ray [10]. Our experimental results demonstrate that FuseBot outperforms X-Ray's efficiency by more than 40% in terms of the number of actions required for successful mechanical search. Furthermore, in comparison to X-Ray's success rate of 84%, FuseBot achieves a success rate of 95% in retrieving untagged items, demonstrating for the first time that the benefits of RF perception extend beyond tagged objects in the mechanical search problem.
This demo presents a system for real-time wireless imaging of underwater environments using a fully-submerged battery-free camera. The camera powers up from harvested acoustic energy, captures images using an ultra-low-power image sensor, and communicates wirelessly using piezo-acoustic backscatter. A demo video of the battery-free camera can be found here: https://www.youtube.com/watch?v=kyVZ1ll6_qY
Mechanical search is a robotic problem where a robot needs to retrieve a target item that is partially or fully-occluded from its camera. State-of-the-art approaches for mechanical search either require an expensive search process to find the target item, or they require the item to be tagged with a radio frequency identification tag (eg, RFID), making their approach beneficial only to tagged items in the environment. We present FuseBot, the first robotic system for RF-Visual mechanical search that enables efficient retrieval of both RF-tagged and untagged items in a pile. Rather than requiring all target items in a pile to be RF-tagged, FuseBot leverages the mere existence of an RF-tagged item in the pile to benefit both tagged and untagged items. Our design introduces two key innovations. The first is RF-Visual Mapping, a technique that identifies and locates RF-tagged items in a pile and uses this information to construct an RF-Visual occupancy distribution map. The second is RF-Visual Extraction, a policy formulated as an optimization problem that minimizes the number of actions required to extract the target object by accounting for the probabilistic occupancy distribution, the expected grasp quality, and the expected information gain from future actions. We built a real-time end-to-end prototype of our system on a UR5e robotic arm with in-hand vision and RF perception modules. We conducted over 180 real-world experimental trials to evaluate FuseBot and compare its performance to a state-of-the-art vision-based system named X-Ray. Our experimental results demonstrate that FuseBot outperforms X-Ray’s efficiency by more than 40% in terms of the number of actions required for successful mechanical search. Furthermore, in comparison to X-Ray’s success rate of 84%, FuseBot achieves a success rate of 95% in retrieving untagged items, demonstrating for the first time that the benefits of RF perception extend beyond tagged objects in the mechanical search problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.