PDZ domains constitute common models to study single-domain allostery without significant structural changes. The third PDZ domain of PSD-95 (PDZ3) is known to have selective structural features that confer unique modulatory roles to this unit. In this model system, two residues, H372 directly connected to the binding site and G330 holding an off-binding-site position, were designated to assess the effect of mutations on binding selectivity. It has been observed that the H372A and G330T-H372A mutations change ligand preferences from class I (T/S amino acid at position −2 of the ligand) to class II (hydrophobic amino acid at the same position). Alternatively, the G330T single mutation leads to the recognition of both ligand classes. We have performed a series of molecular dynamics (MD) simulations for wild-type, H372A, and G330T single mutants and a double mutant of PDZ3 in the absence and presence of both types of ligands. With the combination of free-energy difference calculations and a detailed analysis of MD trajectories, "class switching" and "class bridging" behavior of PDZ3 mutants, as well as their effects on ligand selection and binding affinities are explained. We show that the dynamics of the charged N-terminus plays a fundamental role in determining the binding preferences in PDZ3 by altering the electrostatic energy. These findings are corroborated by simulations on N-terminus-truncated versions of these systems. The dynamical allostery orchestrated by the N-terminus offers a fresh perspective to the study of communication pathways in proteins.
PDZ domains constitute common models to study single domain allostery without significant structural changes. The third PDZ domain of PSD-95 (PDZ3) is known to have selective structural features that confer unique modulatory roles to this unit. In this model system two residues, H372 directly connected to the binding site and G330 holding an off-binding-site position, were designated to assess the effect of mutations on binding selectivity. It has been observed that the H372A and G330T/H372A mutations change ligand preferences from class I (T/S amino acid at position −2 of the ligand) to class II (hydrophobic amino acid at the same position). Alternatively, the G330T single mutation leads to the recognition of both ligand classes. We have performed a series of molecular dynamics (MD) simulations for wild-type, H372A, G330T single mutants and a double mutant of PDZ3 in the absence and presence of both types of ligands. With the combination of free energy difference calculations and a detailed analysis of MD trajectories, ‘class switching’ and ‘class bridging’ behavior of PDZ3 mutants, as well as their effects on ligand selection and binding affinities are explained. We show that the dynamics of the charged N-terminus plays a fundamental role in determining the binding preferences in PDZ3 by altering the electrostatic energy. These findings are corroborated by simulations on N-termini truncated versions of these systems. The dynamical allostery orchestrated by the N-terminus offers a fresh perspective to the study of communication pathways in proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.