Buprenorphine is a mixed opioid receptor agonist-antagonist used clinically for maintenance therapy in opiate addicts and pain management. Dose-response curves for buprenorphine-induced antinociception display ceiling effects or are bell shaped, which have been attributed to the partial agonist activity of buprenorphine at opioid receptors. Recently, buprenorphine has been shown to activate opioid receptor-like (ORL-1) receptors, also known as OP4 receptors. Here we demonstrate that buprenorphine, but not morphine, activates mitogen-activated protein kinase and Akt via ORL-1 receptors. Because the ORL-1 receptor agonist orphanin FQ/nociceptin blocks opioid-induced antinociception, we tested the hypothesis that buprenorphine-induced antinociception might be compromised by concomitant activation of ORL-1 receptors. In support of this hypothesis, the antinociceptive effect of buprenorphine, but not morphine, was markedly enhanced in mice lacking ORL-1 receptors using the tail-flick assay. Additional support for a modulatory role for ORL-1 receptors in buprenorphine-induced antinociception was that coadministration of J-113397, an ORL-1 receptor antagonist, enhanced the antinociceptive efficacy of buprenorphine in wild-type mice but not in mice lacking ORL-1 receptors. The ORL-1 antagonist also eliminated the bell-shaped dose-response curve for buprenorphine-induced antinociception in wild-type mice. Although buprenorphine has been shown to interact with multiple opioid receptors, mice lacking micro-opioid receptors failed to exhibit antinociception after buprenorphine administration. Our results indicate that the antinociceptive effect of buprenorphine in mice is micro-opioid receptor-mediated yet severely compromised by concomitant activation of ORL-1 receptors.
Opioid-receptor activation in cell lines results in phosphorylation of p42/44 mitogen-activated protein kinase (MAPK), which contributes to agonist-induced desensitization of adenylate cyclase signaling. In this study, morphine-induced MAPK modulation was examined in the mouse brain using antibodies against phosphorylated MAPK. Thirty minutes after systemic morphine, MAPK modulation was observed in brain areas associated with analgesia and reward. Activation of MAPK was increased in the anterior cingulate (Acc), somato-sensory and association cortices, and locus ceruleus (LC). In contrast, MAPK activation was decreased in the nucleus accumbens and central amygdala (CeA). Double-label confocal microscopy revealed that morphine-induced MAPK modulation occurred predominantly in cells not expressing mu-opioid receptors, with the exception of the LC. Furthermore, the NMDA receptor antagonist 3,3-(2-carboxypiperazine-4-yl)-propyl-1-phosphonate blocked morphine-induced MAPK modulation in several cortical areas including the Acc. We then examined morphine-induced MAPK modulation during expression of either analgesic tolerance or locomotor sensitization, which were differentiated by two repeated morphine regimens. Analgesic tolerance was accompanied by tolerance to morphine-induced MAPK modulation in all of the brain areas examined except the CeA. Locomotor sensitization resulted in sensitization to morphine-induced MAPK activation in the posterior basolateral amygdala. Additionally, a pronounced instatement of morphine-induced MAPK activation was observed in CA3 hippocampal processes. This instatement was observed during expression of tolerance; however, it was not significant during sensitization. In summary, these results provide distinct, region-specific mechanisms for morphine-induced MAPK modulation in the mouse brain and give insight into the brain circuitry involved in acute and adaptive opioid behaviors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.