Deep hypercomplex-inspired convolutional neural networks (CNNs) have recently enhanced feature extraction for image classification by allowing weight sharing across input channels. This makes it possible to improve the representation acquisition abilities of the networks. Hypercomplex-inspired networks, however, still incur higher computational costs than standard CNNs. This paper reduces this cost by decomposing a quaternion 2D convolutional module into two consecutive separable vectormap modules. In addition, we use 4 and 5D parameterized hypercomplex multiplication-based fully connected layers. Incorporating both yields our proposed hypercomplex CNN, a novel architecture that can be assembled to construct deep separable hypercomplex networks (SHNNs) for image classification. We conduct experiments on CIFAR, SVHN, and Tiny ImageNet datasets and achieve better performance using fewer trainable parameters and FLOPS. Our proposed model achieves almost 2% higher performance for CIFAR and SVHN datasets and more than 3% for the ImageNet-Tiny dataset and takes 84%, 35%, and 51% fewer parameters than the ResNets, quaternion, and vectormap networks, respectively. Also, we achieve state-of-the-art performance on CIFAR benchmarks in hypercomplex space.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.