This paper compares the performance of the maximum-simulated likelihood (MSL) approach with the composite marginal likelihood (CML) approach in multivariate ordered-response situations. The ability of the two approaches to recover model parameters in simulated data sets is examined, as is the efficiency of estimated parameters and computational cost. Overall, the simulation results demonstrate the ability of the Composite Marginal Likelihood (CML) approach to recover the parameters very well in a 5-6 dimensional ordered-response choice model context. In addition, the CML recovers parameters as well as the MSL estimation approach in the simulation contexts used in the current study, while also doing so at a substantially reduced computational cost. Further, any reduction in the efficiency of the CML approach relative to the MSL approach is in the range of non-existent to small. When taken together with its conceptual and implementation simplicity, the CML approach appears to be a promising approach for the estimation of not only the multivariate ordered-response model considered here, but also for other analytically-intractable econometric models.
This paper proposes a multivariate ordered response system framework to model the interactions in non-work activity episode decisions across household and non-household members at the level of activity generation. Such interactions in activity decisions across household and nonhousehold members are important to consider for accurate activity-travel pattern modeling and policy evaluation. The econometric challenge in estimating a multivariate ordered-response system with a large number of categories is that traditional classical and Bayesian simulation techniques become saddled with convergence problems and imprecision in estimates, and they are also extremely cumbersome if not impractical to implement. We address this estimation problem by resorting to the technique of composite marginal likelihood (CML), an emerging inference approach in the statistics field that is based on the classical frequentist approach, is very simple to estimate, is easy to implement regardless of the number of count outcomes to be modeled jointly, and requires no simulation machinery whatsoever.
This paper proposes and estimates a spatial panel ordered-response probit model with temporalautoregressive error terms to analyze changes in urban land development intensity levels over time. Such a model structure maintains a close linkage between the land owner's decision (unobserved to the analyst) and the land development intensity level (observed by the analyst), and accommodates spatial interactions between land owners that lead to spatial spillover effects.In addition, the model structure incorporates spatial heterogeneity as well as spatial heteroscedasticity. The resulting model is estimated using a composite marginal likelihood (CML) approach that does not require any simulation machinery and that can be applied to data sets of any size. A simulation exercise indicates that the CML approach recovers the model parameters very well, even in the presence of high spatial and temporal dependence. In addition, the simulation results demonstrate that ignoring spatial dependency and spatial heterogeneity when both are actually present will lead to bias in parameter estimation. A demonstration exercise applies the proposed model to examine urban land development intensity levels using parcel-level data from Austin, Texas.
Sensitivity analysis conducted using the model demonstrates the applicability of the model for quantifying consumption adjustment patterns in response to rising fuel prices. It is found that households adjust their food consumption, vehicular purchases, and savings rates in the short run. In the long term, adjustments are also made to housing choices (expenses), calling for the need to ensure that fuel price effects are adequately reflected in integrated microsimulation models of land use and travel.
The Tennessee Department of Transportation replaced the quick-response-based long-distance component in its statewide model by integrating the new national long-distance passenger travel demand model in a new statewide model and calibrating it to long-distance trips observed in cell phone origin–destination data. The national long-distance model is a tour-based simulation model developed from FHWA research on long-distance travel behavior and patterns. The tool allows the evaluation of many policy scenarios, including fare or service changes for various modes, such as commercial air, intercity bus, Amtrak rail, and highway travel. The availability of this tool presents an opportunity for state departments of transportation in developing statewide models. Commercial big data from cell phones for long-distance trips also pre-sents an opportunity and a new data source for long-distance travel patterns, which previously have been the subject of limited data collection, in the form of surveys. This project is the first to seize on both of these opportunities by integrating the national long-distance model with the new Tennessee statewide model and by processing big data for use as a calibration target for long-distance travel in a statewide model. The paper demonstrates the feasibility of integrating the national model with statewide models, the ability of the national model to be calibrated to new data sources, the ability to combine multiple big data sources, and the value of big data on long-distance travel, as well as important lessons on its expansion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.