Tomato is one of the most prominent crops in global horticulture and an important vegetable crop in Kazakhstan. The lack of data on the genetic background of local varieties limits the development of tomato breeding in the country. This study aimed to perform an initial evaluation of the breeding collection of tomato varieties from the point of view of their genetic structure and pathogen resistance using a set of PCR based molecular markers, including 13 SSR markers for genetic structure analysis, and 14 SCAR and CAPS markers associated with resistance to five pathogens: three viruses, fungus Fusarium oxysporum, and oomycete P hytophthora infestans. Nine SSR markers were with a PIC value varying from 0.0562 (low information content) to 0.629 (high information content). A weak genetic structure was revealed in the samples of varieties including local cultivars and, predominantly, varieties from Russia and other ex-USSR countries. The local varieties were closely related to several groups of cultivars of Russian origin. Screening for a set of resistance markers revealed the common occurrence of the resistance locus I against Fusarium oxysporum and only the occasional presence of resistance alleles of other markers. No markers of resistance to the three considered viruses were revealed in local tomato varieties. Only two local cultivars had markers of resistance to P. infestans, and only the ‘Meruert’ cultivar had a combination of resistance markers against P. infestans and F. oxysporum. The obtained results have demonstrated the need for further studies of local tomato varieties with a wider range of molecular markers and source germplasm to lay a foundation for the development of tomato breeding in Kazakhstan.
Raspberry bushy dwarf virus (RBDV) is an economically significant pathogen of raspberry and grapevine, and it has also been found in cherry. Most of the currently available RBDV sequences are from European raspberry isolates. This study aimed to sequence genomic RNA2 of both cultivated and wild raspberry in Kazakhstan and compare them to investigate their genetic diversity and phylogenetic relationships, as well as to predict their protein structure. Phylogenetic and population diversity analyses were performed on all available RBDV RNA2, MP and CP sequences. Nine of the isolates investigated in this study formed a new, well-supported clade, while the wild isolates clustered with the European isolates. Predicted protein structure analysis revealed two regions that differed between α- and β-structures among the isolates. For the first time, the genetic composition of Kazakhstani raspberry viruses has been characterized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.