A novel sensing system was designed for pH measurements based on the enhanced and quenched photoluminescence (PL) and UV-Vis absorption of the diluted water solutions of F-, O-, and N-containing carbon nanoparticles (FON-CNPs). These FON-CNPs were solvothermally synthesized, dissolved, ultra-iltrated, and separated by thin-layer chromatography. The total luorine content in them was found to be 1.2-1.5 mmol per gram. Their TGA showed a total weight loss of 52.7% because of the thermal decomposition and detachment of the surface groups and the partial burning of the functionalized shell on the carbon core at temperatures below 1200 °C. TEM and Raman data conirmed the presence of graphitic structures in the carbon core. From the results of ATR FTIR and UV-Vis spectroscopies, we showed that a carbon shell incorporates diferent functional groups covering the carbon core. The surface groups of the carbon shell include carboxyl, phenolic, and carbonyl groups. Heterocyclic N-containing and amino groups and triluoromethyl groups supporting the hydrophobicity were also found. We suggested the possible reasons for the pH responses obtained with the sensing system considering them dependent on the de-protonation of functional groups with pH change.
A new generation of sensors can be engineered based on the sensing of several markers to satisfy the conditions of the multimodal detection principle. From this point of view, photoacoustic-based sensing approaches are essential. The photoacoustic effect relies on the generation of light-induced deformation (pressure) perturbations in media, which is essential for sensing applications since the photoacoustic response is formed due to a contrast in the optical, thermal, and acoustical properties. It is also particularly important to mention that photoacoustic light-based approaches are flexible enough for the measurement of thermal/elastic parameters. Moreover, the photoacoustic approach can be used for imaging and visualization in material research and biomedical applications. The advantages of photoacoustic devices are their compact sizes and the possibility of on-site measurements, enabling the online monitoring of material parameters. The latter has significance for the development of various sensing applications, including biomedical ones, such as monitoring of the biodistribution of biomolecules. To extend sensing abilities and to find reliable measurement conditions, one needs to clearly understand all the phenomena taking place during energy transformation during photoacoustic signal formation. Therefore, the current paper is devoted to an overview of the main measurement principles used in the photoacoustic setup configurations, with a special focus on the key physical parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.