The merging of two rivers can have substantial and persistent effects upon the dispersion of a sudden release of pollutant from one of the tributaries. This paper quantifies the delayed time of arrival and increase in spreading attributable to the junction.
The effect of varying the initial concentration distribution is investigated for a sudden contaminant release in a uniform straight channel. Taking the optimal choice to be that which maximizes the variance of the contaminant cloud far downstream, it is found that, unless the topography is very unusual, the largest variance can be generated by splitting the contaminant into two parts, placing the larger part at the bank where the channel bed slopes most gently, and the remainder near to where the channel is deepest. This procedure significantly reduces peak concentrations far downstream when compared with making the entire release at any single point across the flow. Even at distances as large as six times the e-folding distance for cross-sectional mixing, the splitting of the discharge is shown to reduce the peak concentrations by a third.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.