Water deficit stress at the early stage of development is one of the main factors limiting pearl millet production. One practice to counteract this limitation would be to resort to the application of hormones to stimulate plant growth and development at critical stages. Exogenous methyl jasmonate (MeJA) can improve drought tolerance by modulating signaling, metabolism, and photosynthesis pathways, therefore, we assumed that can occur in pearl millet during the early stage of development. To decipher the molecular mechanisms controlling these pathways, RNAseq was conducted in two pearl millet genotypes, drought-sensitive SosatC88 and drought-tolerant Souna3, in response to 200 μM of MeJA. Pairwise comparison between the MeJA-treated and non-treated plants revealed 3270 differentially expressed genes (DEGs) among 20,783 transcripts in SosatC88 and 127 DEGs out of 20,496 transcripts in Souna3. Gene ontology (GO) classification assigned most regulated DEGs in SosatC88 to heme binding, oxidation–reduction process, response to oxidative stress and membrane, and in Souna3 to terpene synthase activity, lyase activity, magnesium ion binding, and thylakoid. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis reveals that DEGs in SosatC88 are related to the oxidation–reduction process, the biosynthesis of other secondary metabolites, the signal transduction, and the metabolism of terpenoids, while in Souna3, DEGs are related to the metabolism of terpenoids and the energy metabolism. Two genes encoding a diterpenoid biosynthesis-related (Pgl_GLEAN_10009413) and a Glutathione S transferase T3 (Pgl_GLEAN_10034098) were contra-regulated between SosatC88 and Souna3. Additionally, five random genes differentially expressed by RNAseq were validated using qPCR, therefore, they are potential targets for the development of novel strategies breeding schemes for plant growth under water deficit stress. These insights into the molecular mechanisms of pearl millet genotype tolerance at the early stage of development contribute to the understanding of the role of hormones in adaptation to drought-prone environments.
Water deficit stress at the early stage of development is one of the main factors limiting pearl millet production. A practice to cope with would be to apply hormones to stimulate plant growth and development. Exogenous methyl jasmonate (MeJA) can improve drought tolerance by modulating key pathways, therefore, we assumed that can occur in pearl millet during the early stage of development. To decipher the molecular mechanisms controlling these pathways, RNAseq was conducted in two pearl millet genotypes, drought-sensitive SosatC88 and drought-tolerant Souna3, in response to 200 µM of MeJA. Transcriptomic analysis between the MeJA-treated and non-treated plants revealed 3270 differentially expressed genes (DEGs) in SosatC88 and 127 DEGs in Souna3. Gene ontology (GO) classification assigned most regulated DEGs in SosatC88 to heme binding, oxidation-reduction process, response to oxidative stress and membrane, and in Souna3 to terpene synthase activity, lyase activity, magnesium ion binding, and thylakoid. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis reveals that DEGs in SosatC88 are related to the oxidation-reduction process, the biosynthesis of other secondary metabolites, the signal transduction, and the metabolism of terpenoids, while in Souna3, DEGs are related to the metabolism of terpenoids and the energy metabolism. Two genes encoding a diterpenoid biosynthesis-related and a Glutathione S transferase T3 were contra-regulated between SosatC88 and Souna3. Additionally, five random genes differentially expressed by RNAseq were validated using qPCR. These insights into the molecular mechanisms of pearl millet genotype tolerance at the early stage of development contribute to the understanding of the role of hormones in adaptation to drought-prone environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.