By showing that it can greatly enhance the proinflammatory cytokine response induced in macrophages by the RA-specific ACPA-IC, these results highlight a previously undescribed, FcγR-dependent strong proinflammatory potential of IgM RF. They clarify the pathophysiological link between the presence of ACPA and IgM RF, and RA severity.
BackgroundDuring chronic inflammation, immune cells, notably Th17 cells, infiltrate the inflammatory site and interact with local mesenchymal cells. Applied to rheumatoid arthritis (RA), the aim is to study the interactions between synoviocytes and peripheral blood mononuclear cells (PBMC) with a focus on the Th17 pathway and to identify a mechanism which leads to high IL-17 secretion with an interest on podoplanin.MethodsPBMC from healthy donors and RA patients were co-cultured with RA synoviocytes during 48 h, in the presence or not of phytohemagglutinin. An antibody against podoplanin was used in co-culture. Cytokine production (IL-6, IL-1β and IL-17) was measured by ELISA and cell staining (CD3, CD4, IL-17 and podoplanin) by flow cytometry.ResultsIn control conditions, IL-6 and IL-1β production was increased in PBMC-synoviocyte co-culture compared to PBMC alone (p = 0.02). No additional effect was observed with PBMC activation. Flow cytometry analysis showed no difference in the percentage of Th17 cells in activated PBMC alone or with synoviocytes (p = 0.4), indicating that Th17 differentiation requires only T cell activation. Conversely, IL-17 production was highly increased in co-cultures with activated PBMC vs. activated PBMC alone (p = 0.002). Transwell experiments confirm that cell-cell contact was critical for IL-17 secretion. The incubation of either PBMC or synoviocytes with an anti-podoplanin antibody decreased IL-17 secretion by 60 % (p = 0.008).ConclusionsInteractions between resting PBMC and synoviocytes are sufficient to induce IL-6 and IL-1β production. Both PBMC activation and cell interactions are needed to induce a high IL-17 secretion. Podoplanin contributes at the level of both lymphocytes and synoviocytes.
Summary
In the context of psoriasis, T helper type 17 (Th17) cells infiltrate the inflammatory site and interact with local mesenchymal cells, including skin fibroblasts. The aim of this work was to study the interactions of skin‐derived fibroblasts with peripheral blood mononuclear cells (PBMC) with a focus on the Th17 pathway and to identify a mechanism which leads to a high interleukin (IL)−17 secretion. A co‐culture system between PBMC and skin fibroblasts was developed. Healthy and patient PBMC were added to non‐lesional or lesional skin fibroblasts at a 5:1 ratio for 48 h in the presence or not of activation with phytohaemagglutinin (PHA). Monocytes were removed or not by adherence before the co‐culture. An anti‐podoplanin antibody was also used during the co‐culture. Cytokine production (IL‐8, IL‐6, IL‐1β and IL‐17) was measured by enzyme‐linked immunosorbent assay (ELISA) and cell staining (CD3, CD4, IL‐17 and podoplanin) by flow cytometry. Without T cell receptor (TCR) activation, IL‐8, IL‐6 and IL‐1β production increased in PBMC‐fibroblast co‐culture compared to PBMC alone. No additional effect was observed with TCR activation, with no difference in the Th17 cell percentage in activated‐PBMC alone or co‐cultured. Conversely, IL‐17 production was increased highly only in co‐cultures between control and patient activated‐PBMC and skin fibroblasts. Removal of monocytes decreased cytokine production, notably that of IL‐17. Addition of an anti‐podoplanin antibody decreased IL‐17 secretion by 60%. Interactions between resting PBMC and fibroblasts induce the IL‐8, IL‐6 and IL‐1β production. PBMC activation and cell interactions are critical for a high IL‐17 secretion. Podoplanin contributes largely to this massive IL‐17 secretion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.