This study was designed to use LiDAR data to research tree heights in montane forest blocks of Kenya. It uses a completely randomised block design to asses if differences exist in forest heights: 1) among montane forest blocks, 2) among Agro ecological zones (AEZ) within each forest block and 3) between similar AEZ in different forest blocks. Forest height data from the Geoscience Laser Altimeter System (GLAS) on the Ice Cloud and Land Elevation Satellite (ICE-SAT) for the period 2003-2009 was used for 2146 circular plots, of 0.2-0.25 ha in size. Results indicate that, tree height is largely influenced by Agro ecological conditions and the wetter zones have taller trees in the upper, middle and lower highlands. In the upper highland zones of limited human activity, tree heights did not vary among forest blocks. Variations in height among forest blocks and within forest blocks were exaggerated in regions of active human intervention.
Yushania alpina is the only bamboo species native to Kenya and covers about 150,000 ha growing in pure or mixed stands in the montane forests. The Aberdare forest is one of the natural habitats for Y. alpine occupying an area of 6419 ha mainly in the water catchment areas. The growing human population and depletion of other forest resources have necessitated the exploration of Y. alpine as a source of energy. This paper assessed the quantity of Y. alpine available for biomass energy and its potential for sustainable exploitation. Plots were laid on area maps to cater for altitude and distance from farms. The study area was stratified into three altitudinal zones: A (2220 -2330 m), B (2331 -2440 m) and C (2441 -2550 m). The initial sampling plot of 10 m × 10 m was located randomly 500 m from the edge of the forest while the subsequent plots were laid out systematically at intervals of 500 m. In each plot, a total enumeration and biomass estimation of bamboo clumps were done using Muchiri and Muga (2013) [1] method. Bamboo samples and those of commonly used biomass energy sources were analysed for calorific value using bomb calorimeter. In addition, data for quantities of biomass energy used by some local industries were used to estimate the amount of bamboo required. The mean stocking was 19,981 (20,000) culms ha −1 , and varied significantly among altitude strata and distance from adjacent farms. The mean biomass density and energy content were 86 tons/ha and 380,893 Kca/ha respectively with the higher altitudinal stratum (zone C) having the highest means (114 tons/ha) while the lower stratum (zone A) had the lowest (65 tons/ha). The This implies that the bamboo forest in its present stocking can provide biomass energy for these local industries for more than five years. With bamboo maturing with less than five years, the forest can sustainably provide the required energy while still providing its environmental services.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.