A study was conducted to determine the effects of o-nitrobenzoate, p-aminobenzoate, benzocaine (ethyl aminobenzoate), ethyl benzoate, methyl benzoate, salicylic acid (o-hydroxybenzoate), trans-cinnamic acid (,B-phenylacrylic acid), trans-cinnamaldehyde (3-phenylpropenal), ferulic acid (p-hydroxy-3-methoxycinnamic acid), aspirin (o-acetoxy benzoic acid), and anthranilic acid (o-aminobenzoic acid) upon growth and aflatoxin release in Aspergillus flavus NRRL 3145 and A. parasiticus NRRL 3240. A chemically defined medium was supplemented with various concentrations of these compounds and inoculated with spores, and the developing cultures were incubated for 4, 6, and 8 days at 27°C in a mechanical shaker. At the beginning of day 8 of incubation, aflatoxins were extracted from cell-free filtrates, separated by thin-layer chromatography, and quantitated by ultraviolet spectrophotometry. The structure of these aromatic compounds appeared to be critically related to their effects on mycelial growth and aflatoxin release. At concentrations of 2.5 and 5.0 mg per 25 ml of medium, methyl benzoate and ethyl benzoate were the most effective in reducing both mycelial growth and aflatoxin release by A. flavus and A. parasiticus. Inhibition of mycelial growth and aflatoxin release by various concentrations of the above-named aromatic compounds may indicate the possibility of their use as fungicides. Aflatoxins, produced by certain strains of Aspergillus flavus and A. parasiticus, have been well documented as producing significant pathological changes in plants and animals (6, 13). Recent evidence has indicated that aflatoxin may also be involved in the etiology of human liver cancer in certain parts of the world (17).
Aflatoxin production by a toxigenic strain of Aspergillus flavus was greatly reduced by benzoic acid and sodium benzoate in synthetic media. The reduction was accompanied by the appearance of a yellow pigment. Spectral analyses partially characterized this pigment as closely related to an acetyl derivative of a versiconal-type compound. A cell-free extract prepared from A. flavus grown in synthetic media was active in converting this yellow compound into aflatoxin B1 in the presence of reduced nicotinamide adenine dinucleotide phosphate at 25 °C (pH 7.4). In the presence of benzoic acid and its salt or autoclaved cell-free extract, conversion of yellow compound to aflatoxin B1 was prevented. These results suggest that the yellow compound is an intermediate in the secondary metabolic cycle involved in aflatoxin B1 production. Benzoic acid, sodium benzoate, or autoclaving the cell-free extract appear to have respectively blocked or denatured an enzymatic step late in the biosynthetic pathway of aflatoxin B1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.