Chimeric chalcone synthase (CHS) constructs were prepared in both anti-sense and sense orientations, and introduced into the chrysanthemum cultivar Moneymaker, along with a T-DNA vector lacking a CHS construct. For both the anti-sense and sense constructs, the majority of the plants produced pink flowers typical of Moneymaker itself. Of 133 sense and 83 anti-sense transgenic individuals 3 of each set produced fully white or very pale pink flowers. No white-flowering transgenic plants were obtained in control transformations. The white flowers were found to accumulate higher levels of chalcone synthase precursors and to have reduced levels of chalcone synthase message. A small-scale field trial was performed to evaluate the stability of the phenotype throughout a series of vegetative propagation steps and during plant growth. The white-flowering trait was maintained well through vegetative propagation; however, during growth of individual white-flowering plants, some pink color was found in some flowers. At one site 2% of the white-flowering plants produced a few pink flowers; at two other sites, as many as 10-12% of the plants produced pale pink flowers.
We report here the use of the maize transposable element Activator (Ac) to isolate a dicot gene. Ac was introduced into petunia, where it transposed into Ph6, one of several genes that modify anthocyanin pigmentation in flowers by affecting the pH of the corolla. Like other Ac-mutable alleles, the new mutation is unstable and reverts to a functional form in somatic and germinal tissues. The mutant gene was cloned using Ac as a probe, demonstrating the feasibility of heterologous transposon tagging in higher plants. Confirmation that the cloned DNA fragment corresponded to the mutated gene was obtained from an analysis of revertants. In every case examined, reversion to the wild-type phenotype was correlated with restoration of a wild-type-sized DNA fragment. New transposed Acs were detected in many of the revertants. As in maize, the frequency of somatic and germinal excision of Ac from the mutable allele appears to be dependent on genetic background.
We report here the use of the maize transposable element Activator (Ac) to isolate a dicot gene. Ac was introduced into petunia, where it transposed into Ph6, one of several genes that modify anthocyanin pigmentation in flowers by affecting the pH of the corolla. Like other Ac-mutable alleles, the new mutation is unstable and reverts to a functional form in somatic and germinal tissues. The mutant gene was cloned using Ac as a probe, demonstrating the feasibility of heterologous transposon tagging in higher plants. Confirmation that the cloned DNA fragment corresponded to the mutated gene was obtained from an analysis of revertants. In every case examined, reversion to the wild-type phenotype was correlated with restoration of a wild-type-sized DNA fragment. New transposed Acs were detected in many of the revertants. As in maize, the frequency of somatic and germinal excision of Ac from the mutable allele appears to be dependent on genetic background.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.