Improving the energy-efficiency of heating, ventilation, and air-conditioning (HVAC) systems has the potential to realize large economic and societal benefits. This paper concerns the system identification of a hybrid system model of a building-wide HVAC system and its subsequent control using a hybrid system formulation of learning-based model predictive control (LBMPC). Here, the learning refers to model updates to the hybrid system model that incorporate the heating effects due to occupancy, solar effects, outside air temperature (OAT), and equipment, in addition to integrator dynamics inherently present in low-level control. Though we make significant modeling simplifications, our corresponding controller that uses this model is able to experimentally achieve a large reduction in energy usage without any degradations in occupant comfort. It is in this way that we justify the modeling simplifications that we have made. We conclude by presenting results from experiments on our building HVAC testbed, which show an average of 1.5MWh of energy savings per day (p = 0.002) with a 95% confidence interval of 1.0MWh to 2.1MWh of energy savings.
Effective management of operating room resources relies on accurate predictions of surgical case durations. This prediction problem is known to be particularly difficult in pediatric hospitals due to the extreme variation in pediatric patient populations. We pursue two supervised learning approaches: (1) We directly predict the surgical case durations using features derived from electronic medical records and from hospital operational information. For this regression problem, we propose a novel metric for measuring accuracy of predictions which captures key issues relevant to hospital operations. We evaluate several prediction models; some are automated (they do not require input from surgeons) while others are semi-automated (they do require input from surgeons). We see that many of our automated (2) We consider a classification problem in which each prediction provided by a surgeon is predicted to be correct, an overestimate, or an underestimate. This classification mechanism builds on the metric mentioned above and could potentially be useful for detecting human errors. Both supervised learning approaches give insights into the feature engineering process while creating the basis for decision support tools.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.