Carbon nanotubes (CNTs) offer great potential for advanced sensing devices due to their unique electronic transport properties. However, a significant obstacle to the realization of practical CNT devices is the formation of controlled, reliable and reproducible CNT to metallic contacts. In this work, a procedure for the deposition and alignment of CNTs onto metallic electrodes using chemically functionalized lithographic patterns is reported. This method uses photo and electron beam lithography to pattern simple Cr/Au thin film circuits on oxidized Si substrates. The circuits are then re-patterned with a self-assembled monolayer (SAM) of 3-aminopropyltriethoxysilane (APTES) to specify desired CNT locations between electrodes. The application of an electric field to the metallic contacts during the deposition of solution suspended single walled CNTs causes alignment of the CNTs in the field direction. This method consistently produces aligned CNTs in the defined locations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.