Sign Language Recognition (SLR) has been an active research field for the last two decades. However, most research to date has considered SLR as a naive gesture recognition problem. SLR seeks to recognize a sequence of continuous signs but neglects the underlying rich grammatical and linguistic structures of sign language that differ from spoken language. In contrast, we introduce the Sign Language Translation (SLT) problem. Here, the objective is to generate spoken language translations from sign language videos, taking into account the different word orders and grammar. We formalize SLT in the framework of Neural Machine Translation (NMT) for both end-to-end and pretrained settings (using expert knowledge). This allows us to jointly learn the spatial representations, the underlying language model, and the mapping between sign and spoken language. To evaluate the performance of Neural SLT, we collected the first publicly available Continuous SLT dataset, RWTH-PHOENIX-Weather 2014T 1. It provides spoken language translations and gloss level annotations for German Sign Language videos of weather broadcasts. Our dataset contains over .95M frames with >67K signs from a sign vocabulary of >1K and >99K words from a German vocabulary of >2.8K. We report quantitative and qualitative results for various SLT setups to underpin future research in this newly established field. The upper bound for translation performance is calculated at 19.26 BLEU-4, while our end-to-end frame-level and gloss-level tokenization networks were able to achieve 9.58 and 18.13 respectively.
We present a novel approach to automatic Sign Language Production using recent developments in Neural Machine Translation (NMT), Generative Adversarial Networks, and motion generation. Our system is capable of producing sign videos from spoken language sentences. Contrary to current approaches that are dependent on heavily annotated data, our approach requires minimal gloss and skeletal level annotations for training. We achieve this by breaking down the task into dedicated sub-processes. We first translate spoken language sentences into sign pose sequences by combining an NMT network with a Motion Graph. The resulting pose information is then used to condition a generative model that produces photo realistic sign language video sequences. This is the first approach to continuous sign video generation that does not use a classical graphical avatar. We evaluate the translation abilities of our approach on the PHOENIX14T Sign Language Translation dataset. We set a baseline for text-to-gloss translation, reporting a BLEU-4 score of 16.34/15.26 on dev/test sets. We further demonstrate the video generation capabilities of our approach for both multi-signer and high-definition settings qualitatively and quantitatively using broadcast quality assessment metrics.
Prior work on Sign Language Translation has shown that having a mid-level sign gloss representation (effectively recognizing the individual signs) improves the translation performance drastically. In fact, the current state-of-theart in translation requires gloss level tokenization in order to work. We introduce a novel transformer based architecture that jointly learns Continuous Sign Language Recognition and Translation while being trainable in an end-to-end manner. This is achieved by using a Connectionist Temporal Classification (CTC) loss to bind the recognition and translation problems into a single unified architecture. This joint approach does not require any ground-truth timing information, simultaneously solving two co-dependant sequence-tosequence learning problems and leads to significant performance gains.We evaluate the recognition and translation performances of our approaches on the challenging RWTH-PHOENIX-Weather-2014T (PHOENIX14T) dataset. We report state-of-the-art sign language recognition and translation results achieved by our Sign Language Transformers. Our translation networks outperform both sign video to spoken language and gloss to spoken language translation models, in some cases more than doubling the performance (9.58 vs. 21.80 BLEU-4 Score). We also share new baseline translation results using transformer networks for several other text-to-text sign language translation tasks.
In this work we present a new approach to the field of weakly supervised learning in the video domain. Our method is relevant to sequence learning problems which can be split up into sub-problems that occur in parallel. Here, we experiment with sign language data. The approach exploits sequence constraints within each independent stream and combines them by explicitly imposing synchronisation points to make use of parallelism that all sub-problems share. We do this with multi-stream HMMs while adding intermediate synchronisation constraints among the streams. We embed powerful CNN-LSTM models in each HMM stream following the hybrid approach. This allows the discovery of attributes which on their own lack sufficient discriminative power to be identified. We apply the approach to the domain of sign language recognition exploiting the sequential parallelism to learn sign language, mouth shape and hand shape classifiers. We evaluate the classifiers on three publicly available benchmark data sets featuring challenging real-life sign language with over 1000 classes, full sentence based lipreading and articulated hand shape recognition on a fine-grained hand shape taxonomy featuring over 60 different hand shapes. We clearly outperform the state-of-the-art on all data sets and observe significantly faster convergence using the parallel alignment approach.
We propose a novel deep learning approach to solve simultaneous alignment and recognition problems (referred to as "Sequence-to-sequence" learning). We decompose the problem into a series of specialised expert systems referred to as SubUNets. The spatio-temporal relationships between these SubUNets are then modelled to solve the task, while remaining trainable end-to-end.The approach mimics human learning and educational techniques, and has a number of significant advantages. SubUNets allow us to inject domain-specific expert knowledge into the system regarding suitable intermediate representations. They also allow us to implicitly perform transfer learning between different interrelated tasks, which also allows us to exploit a wider range of more varied data sources.In our experiments we demonstrate that each of these properties serves to significantly improve the performance of the overarching recognition system, by better constraining the learning problem.The proposed techniques are demonstrated in the challenging domain of sign language recognition. We demonstrate state-of-the-art performance on hand-shape recognition (outperforming previous techniques by more than 30%). Furthermore, we are able to obtain comparable sign recognition rates to previous research, without the need for an alignment step to segment out the signs for recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.