Pseudomonas aeruginosa galactose- and fucose-binding lectins (PA-IL and PA-IIL) contribute to the virulence of this pathogenic bacterium, which is a major cause of morbidity and mortality in cystic fibrosis patients. The crystal structure of PA-IIL in complex with fucose reveals a tetrameric structure. Each monomer displays a nine-stranded, antiparallel b-sandwich arrangement and contains two close calcium cations that mediate the binding of fucose in a recognition mode unique among carbohydrate-protein interactions. Experimental binding studies, together with theoretical docking of fucose-containing oligosaccharides, are consistent with the assumption that antigens of the Lewis a (Le(a)) series may be the preferred ligands of this lectin. Precise knowledge of the lectin-binding site should allow a better design of new antibacterial-adhesion prophylactics.
The structure of the tetrameric Pseudomonas aeruginosa lectin I (PA-IL) in complex with galactose and calcium was determined at 1.6 A resolution, and the native protein was solved at 2.4 A resolution. Each monomer adopts a beta-sandwich fold with ligand binding site at the apex. All galactose hydroxyl groups, except O1, are involved in a hydrogen bond network with the protein and O3 and O4 also participate in the co-ordination of the calcium ion. The stereochemistry of calcium galactose binding is reminiscent of that observed in some animal C-type lectins. The structure of the complex provides a framework for future design of anti-bacterial compounds.
Plant pathogens, like animal ones, use protein-carbohydrate interactions in their strategy for host recognition, attachment, and invasion. The bacterium Ralstonia solanacearum, which is distributed worldwide and causes lethal wilt in many agricultural crops, was shown to produce a potent L-fucose-binding lectin, R. solanacearum lectin, a small protein of 90 amino acids with a tandem repeat in its amino acid sequence. In the present study, surface plasmon resonance experiments conducted on a series of oligosaccharides show a preference for binding to ␣Fuc1-2Gal and ␣Fuc1-6Gal epitopes. Titration microcalorimetry demonstrates the presence of two binding sites per monomer and an unusually high affinity of the lectin for ␣Fuc1-2Gal-containing oligosaccharides (K D ؍ 2.5 ؋ 10 ؊7 M for 2-fucosyllactose). R. solanacearum lectin has been crystallized with a methyl derivative of fucose and with the highest affinity ligand, 2-fucosyllactose. X-ray crystal structures, the one with ␣-methyl-fucoside being at ultrahigh resolution, reveal that each monomer consists of two small four-stranded anti-parallel -sheets. Trimerization through a 3-fold or pseudo-3-fold axis generates a six-bladed -propeller architecture, very similar to that previously described for the fungal lectin of Aleuria aurantia. This is the first report of a -propeller formed by oligomerization and not by sequential domains. Each monomer presents two fucose binding sites, resulting in six symmetrically arranged sugar binding sites for the -propeller. Crystals were also obtained for a mutated lectin complexed with a fragment of xyloglucan, a fucosylated polysaccharide from the primary cell wall of plants, which may be the biological target of the lectin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.