The viscoelastic and viscoplastic behaviors of high density polyethylene (HDPE) under uniaxial monotonic and cyclic loading are modeled using the modified viscoplasticity theory based on overstress (VBO). The viscoelastic modeling capabilities of the modified VBO are investigated by simulating the behavior of semicrystalline HDPE under uniaxial compression tests at different strain rates. In addition, the effects of the modification (introducing the variable “C” into an elastic strain rate equation) on VBO that has been made to construct the change in the elastic stiffness while loading and unloading are investigated. During first loading and unloading, the modification in the elastic strain rate equation improves the unloading behavior. To investigate how the variable “C” that is introduced in the elastic strain rate equation evolves during reloading, the cyclic behavior of HDPE is modeled. For a complete viscoelastic and viscoplastic behavior, the relaxation and creep behaviors of HDPE are simulated as well in addition to stress and strain rate dependency. The influences of the strain (stress) levels where the relaxation (creep) experiments are performed are investigated. The simulation results are compared with the experimental data obtained by Zhang and Moore (1997, Polym. Eng. Sci., 37, pp. 404–413). A good match between experimental and simulation results are observed.
This article describes a series of experiments conducted to determine the effects of loading history and manufacturing techniques on mechanical behavior of high- density polyethylene (HDPE). The main reason for undertaking the research was to investigate multiple creep, multiple relaxation, and cyclic loading on uniaxial tension. The samples used for tensile tests were obtained from extruded pipe and compression-molded sheets. The stress—strain responses of both samples under uniaxial tensile were found to be independent of the loading history. It was observed that the compression-molded specimens exhibit greater deformation ratio than the extruded specimen. Understanding the deformation behavior under different loading can offer the designer of high-density polyethylene products reliable data relevant to practical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.