Background: In the last decade, incidences of carbapenem-resistant Acinetobacter baumannii have been increasingly reported worldwide. Consequently, A. baumannii was included in the World Health Organization's new list of critical pathogens, for which new drugs are desperately needed. The objective of this research was to study the molecular epidemiology and antimicrobial susceptibility of clinical carbapenemresistant A. baumannii isolated from Jordanian hospitals. Methods: A total of 78 A. baumannii and 8 Acinetobacter spp. isolates were collected from three major hospitals in Jordan during 2018. Disc diffusion and microdilution methods were used to test their susceptibility against 19 antimicrobial agents.Multilocus sequence typing (MLST) was performed using the Pasteur scheme, followed by eBURST analysis for all isolates. PCR was used to detect β-lactam resistance genes, bla OX A-23-like , bla OX A-51-like , and bla NDM-1 .Results: Of the 86 tested isolates, 78 (90.6%) exhibited resistance to carbapenems, whereas no resistance was recorded to tigecycline or polymyxins. Based on the resistance profiles, 10.4% and 84.8% of isolates were classified into multidrug resistant (MDR) or extensively drug resistant (XDR), respectively. The most prevalent carbapenems resistance genes amongst isolates were bla OX A-51-Like (89.5%), followed by bla OXA-23-Like (88.3%) and bla NDM-1 (10.4%). MLST revealed the presence of 19 sequence types (STs), belonging to eight different international complexes. The most commonly detected clonal complex (CC) was CC2, representing 64% of all typed isolates.Conclusions: This is the first study to report the clonal diversity of A. baumannii isolates in Jordan. A high incidence of carbapenem resistance was detected in the isolates investigated. In addition, our findings provided evidence for the widespread of bla OXA-23-like harbouring carbapenem-resistant A. baumannii and belonging to CC2.The number of XDR isolates identified in this study is alarming. Thus, periodic surveillance and molecular epidemiological studies of resistance factors are important to improve treatment outcomes and prevent the spread of A. baumannii infections.
Acinetobacter baumannii is one of the most successful pathogens that can cause difficult-to-treat nosocomial infections. Outbreaks and infections caused by multi-drug resistant A. baumannii are prevalent worldwide, with only a few antibiotics are currently available for treatments. Plasmids represent an ideal vehicle for acquiring and transferring resistance genes in A. baumannii. Five extensively drug-resistant A. baumannii clinical isolates from three major Jordanian hospitals were fully sequenced. Whole-Genome Sequences (WGS) were used to study the antimicrobial resistance and virulence genes, sequence types, and phylogenetic relationship of the isolates. Plasmids were characterized In-silico, followed by conjugation, and plasmid curing experiments. Eight plasmids were recovered; resistance plasmids carrying either aminoglycosides or sulfonamide genes were detected. Chromosomal resistance genes included blaOXA-66, blaOXA-91, and blaOXA-23,and the detected virulence factors were involved in biofilm formation, adhesion, and many other mechanisms. Conjugation and plasmid curing experiments resulted in the transfer or loss of several resistance phenotypes. Plasmid profiling along with phylogenetic analyses revealed high similarities between two A. baumannii isolates recovered from two different intensive care units (ICU). The high similarities between the isolates of the study, especially the two ICU isolates, suggest that there is a common A. baumannii strain prevailing in different ICU wards in Jordanian hospitals. Three resistance genes were plasmid-borne, and the transfer of the resistance phenotype emphasizes the role and importance of conjugative plasmids in spreading resistance among A. baumannii clinical strains.
Amphotericin B (AmB) is one of the first-line treatments for systemic fungal infections, yet it suffers from doselimiting systemic toxicity and high cost of less toxic lipid-based formulations. Here, we report on a facile approach to synthesize an AmB-loaded nanomedicine by leveraging plant-inspired oxidative self-polymerization of the ubiquitous polyphenol quercetin (QCT). Polymerized QCT nanoparticles (pQCT NPs) were formed, loaded with AmB, and functionalized with poly(ethylene glycol) (PEG) to impart steric stability in a simple procedure that relied on mixing followed by dialysis. The AmB-loaded NPs (AmB@pQCT-PEG NPs) were characterized by a drug loading efficiency of more than 90%, a particle size of around 160 nm, a polydispersity index of 0.07, and a partially negative surface charge. AmB release from the NPs was sustained over several days and followed the Korsmeyer−Peppas model with a release exponent (n) value >0.85, denoting drug release by polymer relaxation and swelling. A hemolysis assay revealed the NPs to be highly biocompatible, with negligible hemolytic activity and 30−60% hemolysis after 1 and 24 h of incubation with erythrocytes, respectively, across a wide concentration range (6.25−100.00 μg/mL). Conversely, equivalent concentrations of free AmB caused 90−100% hemolysis within the same timeframe. Importantly, AmB@pQCT-PEG NPs outperformed free AmB in microbial susceptibility assays on Candida albicans, achieving a minimum inhibitory concentration of 62.5 ng/mL after 48 h of incubation, which was 2-fold lower than the free drug. Our results demonstrate that pQCT NPs may serve as a viable AmB delivery platform for the treatment of fungal infections and potentially other AmB-susceptible pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.