Cyclotriphosphazen-hexa imine ligand was prepared through successive reactions of phosphonitrilchloride trimer with 4-hydroxybenzaldehyde and (3-aminopropyl) triethoxy silane. The as-prepared ligand was then covalently grafted on boehmite to furnish an efficient support for the immobilization of Pd nanoparticles and synthesis of a novel heterogeneous catalyst for hydrogenation of nitro arenes. The catalytic tests revealed that the catalyst had excellent catalytic activity for hydrogenation of various nitro arenes with different steric and electronic features under mild reaction condition in aqueous media. Noteworthy, the catalyst was highly selective and in the substrates with ketone or aldehyde functionalities, reduction of nitro group was only observed. The catalyst was also recyclable and only slight loss of activity was detected after each recycling run. Hot filtration test also approved true heterogeneous nature of catalysis.
A novel thermo-responsive catalyst for the hydrogenation of nitroarenes under mild reaction condition was devised. To prepare the catalyst, a thermo-responsive polymer was first synthesized through the co-polymerization of N-isopropylacrylamide and allylamine and then covalently grafted on the Cl-functionalized perlite. The resulting composite was subsequently utilized as a support for the stabilization of Pd nanoparticles. Investigation of the catalytic activity of the catalyst approved its high catalytic activity at a temperature above the lower critical solution temperature. More precisely, 0.03 g of the catalyst can promote the reaction of 1 mmol of nitro-compounds in H2O/EtOH (1:1) at 45 °C to furnish the corresponding products in 70–100% yields. This issue was assigned to the collapse of the polymeric component and formation of a hydrophobic environment that was beneficial for the mass-transfer of the hydrophobic nitroarenes. Notably, the catalytic activity of the catalyst was higher than that of palladated perlite and thermos-responsive polymer due to the synergistic effects between the perlite and polymeric moiety. Furthermore, the study of the substrate scope confirmed that a wide range of substrates with different steric and electronic properties could tolerate hydrogenation reaction. Moreover, the catalyst was highly selective toward hydrogenation of the nitro group and could be recycled up to seven runs with insignificant Pd leaching and loss of catalytic activity. The hot filtration test also confirmed the heterogeneous nature of the catalysis.
One of the main drawbacks of supported ionic liquids is their low loading and consequently, low activity of the resultant catalysts. To furnish a solution to this issue, a novel heterocyclic ligand with multi imine sites was introduced on the surface of amino-functionalized halloysite support via successive reactions with 2,4,6-trichloro-1,3,5-triazine and 2-aminopyrimidine. Subsequently, the imine sites were transformed to sulfonic acid-based ionic liquids via reaction with 1,4-butanesultone. Using this strategy, high loading of ionic liquid was loaded on halloysite nanoclay. The supported ionic liquid was then characterized with XRD, SEM, TEM, EDS, FTIR, BET, TGA and elemental mapping analysis and utilized as a metal-free Brønsted acid catalyst for promoting one-pot reaction of aldehydes, dimedone and malononitrile to furnish tetrahydrobenzo[b]pyrans. The catalytic tests confirmed high performance of the catalyst. Moreover, the catalyst was stable upon recycling.
Using boehmite as an available and low-cost natural compound, a bi-functional catalytic composite is prepared through vinyl-functionalization of boehmite, followed by polymerization with the as-prepared bis-vinylimidazolium bromide ionic liquid and supporting of phosphotungstic acid. The catalyst was characterized via ICP, XRD, TGA, FTIR, SEM/EDS and elemental mapping analysis and applied for promoting alcohol oxidation reaction and one-pot tandem alcohol oxidation/Knoevenagel condensation reaction in aqueous media under mild reaction condition. The results indicated high catalytic activity of the catalyst for both reactions. This protocol showed high generality and aliphatic, aromatic and heterocyclic alcohols could be applied as substrates to furnish the corresponding products in high to excellent yields. Furthermore, hot filtration test confirmed true heterogeneous nature of the catalysis. The catalyst could also be recovered readily and reused for at least five runs of the reaction with low loss of the activity and phosphotungstic acid leaching upon each run.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.