The recent adoption of Bayesian networks (BNs) in ecology provides an opportunity to make advances because complex interactions can be recovered from field data and then used to predict the environmental response to changes in climate and biodiversity. In this study, we use a dynamic BN model with a hidden variable and spatial autocorrelation to explore the future of different fish and zooplankton species, given alternate scenarios, and across spatial scales within the North Sea. For most fish species, we were able to predict a trend of increase or decline in response to change in fisheries catch; however, this varied across the different areas, outlining the importance of trophic interactions and the spatial relationship between neighbouring areas. We were able to predict trends in zooplankton biomass in response to temperature change, with the spatial patterns of these effects varying by species. In contrast, there was high variability in terms of response to productivity changes and consequently knock-on effects on higher level trophic species. Finally, we were able to provide a new data-driven modelling approach that accounts for multispecies associations and interactions and their changes over space and time, which might be beneficial to give strategic advice on potential response of the system to pressure.
Ecosystems are known to change in terms of their structure and functioning over time. Modelling this change is a challenge, however, as data are scarce, and models often assume that the relationships between ecosystem components are invariable over time. Dynamic Bayesian Networks (DBN) with hidden variables have been proposed as a method to overcome this challenge, as the hidden variables can capture the unobserved processes. In this paper, we fit a series of DBNs with different hidden variable structures to a system known to have undergone a major structural change, i.e., the Baltic Sea food web. The exact setup of the hidden variables did not considerably affect the result, and the hidden variables picked up a pattern that agrees with previous research on the system dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.