A comprehensive methodology has been created to quantify the degree of criticality of the metals of the periodic table. In this paper, we present and discuss the methodology, which is comprised of three dimensions: supply risk, environmental implications, and vulnerability to supply restriction. Supply risk differs with the time scale (medium or long), and at its more complex involves several components, themselves composed of a number of distinct indicators drawn from readily available peer-reviewed indexes and public information. Vulnerability to supply restriction differs with the organizational level (i.e., global, national, and corporate). The criticality methodology, an enhancement of a United States National Research Council template, is designed to help corporate, national, and global stakeholders conduct risk evaluation and to inform resource utilization and strategic decision-making. Although we believe our methodological choices lead to the most robust results, the framework has been constructed to permit flexibility by the user. Specific indicators can be deleted or added as desired and weighted as the user deems appropriate. The value of each indicator will evolve over time, and our future research will focus on this evolution. The methodology has proven to be sufficiently robust as to make it applicable across the entire spectrum of metals and organizational levels and provides a structural approach that reflects the multifaceted factors influencing the availability of metals in the 21st century.
Imbalances between metal supply and demand, real or anticipated, have inspired the concept of metal criticality. We here characterize the criticality of 62 metals and metalloids in a 3D "criticality space" consisting of supply risk, environmental implications, and vulnerability to supply restriction. Contributing factors that lead to extreme values include high geopolitical concentration of primary production, lack of available suitable substitutes, and political instability. The results show that the limitations for many metals important in emerging electronics (e.g., gallium and selenium) are largely those related to supply risk; those of platinum group metals, gold, and mercury, to environmental implications; and steel alloying elements (e.g., chromium and niobium) as well as elements used in high-temperature alloys (e.g., tungsten and molybdenum), to vulnerability to supply restriction. The metals of most concern tend to be those available largely or entirely as byproducts, used in small quantities for highly specialized applications, and possessing no effective substitutes.economic geology | materials science | substitution | supply risk | sustainability
It is indisputable that modern life is enabled by the use of materials in its technologies. Those technologies do many things very well, largely because each material is used for purposes to which it is exquisitely fitted. The result over time has been a steady increase in product performance. We show that this materials complexity has markedly increased in the past half-century and that elemental life cycle analyses characterize rates of recycling and loss. A further concern is that of possible scarcity of some of the elements as their use increases. Should materials availability constraints occur, the use of substitute materials comes to mind. We studied substitution potential by generating a comprehensive summary of potential substitutes for 62 different metals in all their major uses and of the performance of the substitutes in those applications. As we show herein, for a dozen different metals, the potential substitutes for their major uses are either inadequate or appear not to exist at all. Further, for not 1 of the 62 metals are exemplary substitutes available for all major uses. This situation largely decouples materials substitution from price, thereby forcing material design changes to be primarily transformative rather than incremental. As wealth and population increase worldwide in the next few decades, scientists will be increasingly challenged to maintain and improve product utility by designing new and better materials, but doing so under potential constraints in resource availability.criticality | material substitution | product complexity | metal life cycle | sustainability T he degree to which the materials of modern technology enable and improve our state of life is not adequately appreciated. A century ago, or even half a century ago, less than 12 materials were in wide use: wood, brick, iron, copper, gold, silver, and a few plastics. Today, however, substantial materials diversity in products of every kind is the rule rather than the exception. [A modern computer chip, for example, employs more than 60 different elements (1).] This use of materials is not a whim of the designer, but a carefully calculated effort to achieve increasingly high performance in products simple to complex. Rich Materials Palette of Modern ProductsThere are many examples of this evolution in material complexity (2), but a particularly vivid one is the increase in diversity of the "superalloy" metals used in aircraft turbine blades, as shown in Fig. 1. These nickel-rich alloys are corrosion resistant and stable at higher temperatures than most metals and alloys. As the figure shows, additional alloying elements have been added one by one over the years, and the alloys have assumed more complex structural forms as well. The result has been a relatively steady increase in the engine operating temperature over time, carrying with it increased engine efficiency and reduced greenhouse gas emissions. A similar story could be told for most of today's more advanced technologies and products.This utilization of materials pro...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.