This paper presents the application of machine learning in the control of the metal melting process. Metal melting is a dynamic production process characterized by nonlinear relations between process parameters. In this particular case, the subject of research is the production of white cast iron. Two supervised machine learning algorithms have been applied: the neural network and the support vector regression. The goal of their application is the prediction of the amount of alloying additives in order to obtain the desired chemical composition of white cast iron. The neural network model provided better results than the support vector regression model in the training and testing phases, which qualifies it to be used in the control of the white cast iron production.
The paper presents a methodology of optimization of the gating system for sand casting using the genetic algorithm. Software package for computer-aided design/computer-aided manufacturing (CAD/CAM) was used as the support to the design and verification of the optimized gating system. The geometry of the gating system of sand casting in excavator tooth holder was the subject of optimization. The objective was to maximize filling rate given the constraints posed by both the ingate module and Reynolds number. Mold filling time has been presented as a function of the ingate cross section and casting height. Given the conditions above, as the result of the optimization, a complete geometry of the gating system has been defined. Numerical simulation (software MAGMA 5 ) has been used to verify the validity of the optimized geometry of the gating system.
Abstract. This paper presents the use of metaheuristic optimization techniques to support the improvement of casting process. Genetic algorithm (GA), Ant Colony Optimization (ACO), Simulated annealing (SA) and Particle Swarm Optimization (PSO) have been considered as optimization tools to define the geometry of the casting part's feeder. The proposed methodology has been demonstrated in the design of the feeder for castingPelton turbine bucket. The results of the optimization are dimensional characteristics of the feeder, and the best result from all the implemented optimization processes has been adopted. Numerical simulation has been used to verify the validity of the presented design methodology and the feeding system optimization in the casting system of the Pelton turbine bucket.
Experimental research of cutting force components during dry face milling operations are presented in the paper. The study was provided when milling of ductile cast iron alloyed with copper and its austempered ductile iron after the proper austempering process. In the study, virtual instrumentation designed for cutting forces components monitoring was used. During the research, orthogonal cutting forces components versus time were monitored and relationship of cutting forces components versus speed, feed and depth of cut were determined by artificial neural network and response surface methodology. An analysis was made regarding the consistency of the measured cutting forces and the values obtained from the model supported by an artificial neural network for the investigated interval of the cutting regime. Based on the results, an analysis of the feasibility of the application of austempered ductile iron in the industrial sector with the aspect of machinability as well as the application of the models based on artificial intelligence, was given. At the end of the presentation, the influence of the aforementioned cutting regimes on cutting force components is presented as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.