The use of renewable energy sources increases the energy self-sustainability of cities, enabling citizens to reduce energy costs, which results in an increase in their standard of living. However, solar energy penetration in Bosnia and Herzegovina, and its capital Sarajevo, is not in line with the possibilities. Furthermore, the Sarajevo Canton is extremely polluted during the winter months because of the use of unacceptable heating fuel. The aim of this paper is to introduce photovoltaic power systems use in heating electrification system. In this paper AQI is calculated based on historical data and the hybrid model EMD-SARIMA for air pollution and a solar production forecast is presented. The methodology was tested in the Sarajevo Canton, taking into account 35,000 households. In order to ensure clean air, renewable electric energy use for household heating should be implemented. The widespread use of inefficient individual heating systems characterized by inefficient and expensive use of firewood and the use of coal in individual furnaces in populated areas are the main problems of internal and urban air pollution in Sarajevo Canton. In order to reduce energy poverty in Sarajevo Canton, the use of a floating photovoltaic power plant located on Lake Jablanica with a capacity of 30 MW and the solar prosumers with capacity of 115 MW to provide the 196 GWh necessary for heating electrification of 35,000 households is implemented in this paper. Finally, based on correlation between AQI forecast and solar production it was calculated that the values of the AQI, considering the application of solar energy during 150 days (five months) in one heating season, have significantly decreased. Also renewable energy sources have a very important role in reducing carbon dioxide (CO2) emissions into the atmosphere and reducing urban pollution. With this approach, households would be heated by renewable electricity, which would make Sarajevo a cleaner, smarter city.
In this paper, a novel method for the magnetic flux density estimation in the vicinity of multi-circuit overhead transmission lines is proposed. The proposed method is based on a fully connected feed-forward artificial neural network model that is trained to estimate the magnetic flux density vector components for a range of single-circuit overhead transmission lines. The proposed algorithm is able to simplify estimation process in instances when there are two or more geometrically identical circuits present in the multi-circuit overhead transmission line. In such instances, artificial neural network model is employed to estimate the magnetic flux density distribution over a considered lateral profile for only one of such circuits. The magnetic flux density estimates of the other geometrically identical circuits are derived from these results. The proposed methodology defines the resultant magnetic flux density for the multi-circuit overhead transmission line in terms of the contributions made by individual circuits. The application of the proposed magnetic flux density estimation method is demonstrated on several multicircuit configurations of overhead transmission lines. The performance of the proposed method is compared with the Biot-Savart law based method calculation results as well as with field measurement results.
INDEX TERMSArtificial Neural Network (ANN), Biot-Savart (BS) law based method, Current intensity, Magnetic flux density, Multi-Circuit Overhead Transmission Lines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.