The mammalian Rh (Rhesus) protein family belongs to the Amt/ Mep (ammonia transporter/methylammonium permease)/Rh superfamily of ammonium transporters. Whereas RhCE, RhD and RhAG are erythroid specific, RhBG and RhCG are expressed in key organs associated with ammonium transport and metabolism. We have investigated the ammonium transport function of human RhBG and RhCG by comparing intracellular pH variation in wild-type and transfected HEK-293 (human embryonic kidney) cells and MDCK (Madin-Darby canine kidney) cells in the presence of ammonium (NH 4 + /NH 3 ) gradients. Stopped-flow spectrofluorimetry analysis, using BCECF [2 ,7 -bis-(2-carboxyethyl)-5(6)-carboxyfluorescein] as a pH-sensitive probe, revealed that all cells submitted to inwardly or outwardly directed ammonium gradients exhibited rapid alkalinization or acidification phases respectively, which account for ammonium movements in transfected and native cells. However, as compared with wildtype cells known to have high NH 3 lipid permeability, RhBGand RhCG-expressing cells exhibited ammonium transport characterized by: (i) a five to six times greater kinetic rateconstant; (ii) a weak temperature-dependence; and (iii) reversible inhibition by mercuric chloride (IC 50: 52 µM). Similarly, when subjected to a methylammonium gradient, RhBG-and RhCGexpressing cells exhibited kinetic rate constants greater than those of native cells. However, these constants were five times higher for RhBG as compared with RhCG, suggesting a difference in substrate accessibility. These results, indicating that RhBG and RhCG facilitate rapid and low-energy-dependent bi-directional ammonium movement across the plasma membrane, favour the hypothesis that these Rh glycoproteins, together with their erythroid homologue RhAG [Ripoche, Bertrand, Gane, Birkenmeier, Colin and Cartron (2005) Proc. Natl. Acad. Sci. U.S.A. 101, 17222-17227] constitute a family of NH 3 channels in mammalian cells.
Rh glycoproteins are members of the ammonium transporter (Amt)/methylamine permease (Mep)/Rh family facilitating movement of NH(3) across plasma membranes. Homology models constructed on the basis of the experimental structures of Escherichia coli AmtB and Nitrosomonas europaea Rh50 indicated a channel structure for human RhA (RhAG), RhB (RhBG), and RhC (RhCG) glycoproteins in which external and internal vestibules are linked by a pore containing two strictly conserved histidines. The pore entry is constricted by two highly conserved phenylalanines, "twin-Phe." In this study, RhCG function was investigated by stopped-flow spectrofluorometry measuring kinetic pH variations in HEK293E cells in the presence of an ammonium gradient. The apparent unitary NH(3) permeability of RhCG was determined and was found to be close to that of AmtB. With a site-directed mutagenesis approach, critical residues involved in Rh NH(3) channel activity were highlighted. In the external vestibule, the importance of both the charge and the conformation of the conserved aspartic acid was shown. In contrast to AmtB, individual mutations of each phenylalanine of the twin-Phe impaired the function while the removal of both resulted in recovery of the transport activity. The impact of the mutations suggests that, although having a common function and a similar channel structure, bacterial AmtB and human Rh vary in several aspects of the NH(3) transport mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.