A possible application of neural networks for timely and reliable recognition of radar signal emitters is investigated. In particular, a large data set of intercepted generic radar signal samples is used for investigating and evaluating several neural network topologies, training parameters, input and output coding and machine learning facilitating data transformations. Three case studies are discussed, where in the first two the radar signals are classified in two broad classes -with civil or military application, based on patterns in their pulse train characteristics and in the third one trained to distinguish between several more specific radar functions. Very competitive results of about 82%, 84% and 67% are achieved on the testing data sets.
In this paper we investigate further and extend our previous work on radar signal identification and classification based on a data set which comprises continuous, discrete and categorical data that represent radar pulse train characteristics such as signal frequencies, pulse repetition, type of modulation, intervals, scan period, scanning type, etc. As the most of the real world datasets, it also contains high percentage of missing values and to deal with this problem we investigate three imputation techniques: Multiple Imputation (MI); K-Nearest Neighbour Imputation (KNNI); and Bagged Tree Imputation (BTI). We apply these methods to data samples with up to 60% missingness, this way doubling the number of instances with complete values in the resulting dataset. The imputation models performance is assessed with Wilcoxon's test for statistical significance and Cohen's effect size metrics. To solve the classification task, we employ three intelligent approaches: Neural Networks (NN); Support Vector Machines (SVM); and Random Forests (RF). Subsequently, we critically analyse which imputation method influences most the classifiers' performance, using a multiclass classification accuracy metric, based on the area under the ROC curves. We consider two superclasses ('military' and 'civil'), each containing several 'subclasses', and introduce and propose two new metrics: inner class accuracy (IA); and outer class accuracy (OA), in addition to the overall classification accuracy (OCA) metric. We conclude that they can be used as complementary to the OCA when choosing the best classifier for the problem at hand.
This paper proposes a linguistic composition based modelling approach by networked fuzzy systems that are known as fuzzy networks. The nodes in these networks are modules of fuzzy rule bases and the connections between these modules are the outputs from some rule bases that are fed as inputs to other rule bases. The proposed approach represents a fuzzy network as an equivalent fuzzy system by linguistic composition of the network nodes. In comparison to the known multiple rule base approaches, this networked rule base approach reflects adequately the structure of the modelled process in terms of interacting sub-processes and leads to more flexible solutions. The approach improves significantly the transparency of the associated model while ensuring a high level of accuracy that is comparable to the one achieved by established approaches. Another advantage of this fuzzy network approach is that it fits well within the existing approaches with single rule base and multiple rule bases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.