This work leverages an original dependency analysis to parallelize loops regardless of their form in imperative programs. Our algorithm distributes a loop into multiple parallelizable loops, resulting in gains in execution time comparable to state-of-the-art automatic source-to-source code transformers when both are applicable. Our graph-based algorithm is intuitive, language-agnostic, proven correct, and applicable to all types of loops. Importantly, it can be applied even if the loop iteration space is unknown statically or at compile time, or more generally if the loop is not in canonical form or contains loop-carried dependency. As contributions we deliver the computational technique, proof of its preservation of semantic correctness, and experimental results to quantify the expected performance gains. We also show that many comparable tools cannot distribute the loops we optimize, and that our technique can be seamlessly integrated into compiler passes or other automatic parallelization suites.
Implicit Computational Complexity (ICC) drives better understanding of complexity classes, but it also guides the development of resources-aware languages and static source code analyzers. Among the methods developed, the mwp-flow analysis [18] certifies polynomial bounds on the size of the values manipulated by an imperative program. This result is obtained by bounding the transitions between states instead of focusing on states in isolation, as most static analyzers do, and is not concerned with termination or tight bounds on values. Those differences, along with its built-in compositionality, make the mwp-flow analysis a good target for determining how ICC-inspired techniques diverge compared with more traditional static analysis methods. This paper's contributions are three-fold: we fine-tune the internal machinery of the original analysis to make it tractable in practice; we extend the analysis to function calls and leverage its machinery to compute the result of the analysis efficiently; and we implement the resulting analysis as a lightweight tool to automatically perform data-size analysis of C programs. This documented effort prepares and enables the development of certified complexity analysis, by transforming a costly analysis into a tractable program, that furthermore decorrelates the problem of deciding if a bound exist with the problem of computing it.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.